欢迎来到冰豆网! | 帮助中心 分享价值,成长自我!
冰豆网
全部分类
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • 党团工作>
  • ImageVerifierCode 换一换
    首页 冰豆网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    技术报告lvds差分电平标准技术报告V100329解读.docx

    • 资源ID:10320763       资源大小:209.37KB        全文页数:17页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    技术报告lvds差分电平标准技术报告V100329解读.docx

    1、技术报告lvds差分电平标准技术报告V100329解读版本:V1.0作者:贾兴刚日期:2016-3-29最后修改:2016-3-291 概述1.1 1.1LVDS简介现在的液晶显示屏普遍采用LVDS接口。LVDS(LowVoltageDifferentialSignal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。最基本的LVDS器件就是LVDS驱动器和接收器。LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5mA。LVDS接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100的匹配电阻,并在接收器的输入端产生大约

    2、350mV的电压。当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑“1”和逻辑“0”状态。LVDS技术在两个标准中被定义:ANSI/TIA/EIA644(1995年11月通过)和IEEEP1596.3(1996年3月通过)。这两个标准中都着重定义了LVDS的电特性,包括:低摆幅(约为350mV)。低电流驱动模式意味着可实现高速传输。ANSI/TIA/EIA644建议了655Mb/s的最大速率和1.923Gb/s的无失真通道上的理论极限速率。LVDS传输支持速率一般在155Mbps(大约为77MHZ)以上。低压摆幅。恒流源电流驱动,把输出电流限制到约为3.5mA左右,使跳变期间的尖峰

    3、干扰最小,因而产生的功耗非常小。这允许集成电路密度的进一步提高,即提高了PCB板的效能,减少了成本。具有相对较慢的边缘速率(dV/dt约为0.300V/0.3ns,即为1V/ns),同时采用差分传输形式,使其信号噪声和EMI都大为减少,同时也具有较强的抗干扰能力。所以,LVDS具有高速、超低功耗、低噪声和低成本的优良特性。LVDS的应用模式单向点对点(pointtopoint),这是典型的应用模式。双向点对点(pointtopoint),能通过一对双绞线实现双向的半双工通信。可以由标准的LVDS的驱动器和接收器构成;但更好的办法是采用总线LVDS驱动器,即BLVDS,这是为总线两端都接负载而设

    4、计的。多分支形式(multidrop),即一个驱动器连接多个接收器。当有相同的数据要传给多个负载时,可以采用这种应用形式。多点结构(multipoint)。此时多点总线支持多个驱动器,也可以采用BLVDS驱动器。它可以提供双向的半双工通信,但是在任一时刻,只能有一个驱动器工作。因而发送的优先权和总线的仲裁协议都需要依据不同的应用场合,选用不同的软件协议和硬件方案。为了支持LVDS的多点应用,即多分支结构和多点结构,2001年新推出的多点低压差分信号(MLVDS)国际标准ANSI/TIA/EIA8992001,规定了用于多分支结构和多点结构的MLVDS器件的标准,目前已有一些MLVDS器件面世。

    5、LVDS技术的应用领域也日渐普遍。在高速系统内部、系统背板互连和电缆传输应用中,驱动器、接收器、收发器、并串转换器/串并转换器以及其他LVDS器件的应用正日益广泛。接口芯片供应商正推进LVDS作为下一代基础设施的基本构造模块,以支持手机基站、中心局交换设备以及网络主机和计算机、工作站之间的互连。 LVDS使用注意:可以达到600M以上,PCB要求较高,差分线要求严格等长,差最好不超过10mil(0.25mm)。100欧电阻离接收端距离不能超过500mil,最好控制在300mil以内。1.2 其他常用电平标准现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVP

    6、ECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使用。注意事项。TTL:Transistor-Transistor Logic 三极管结构。Vcc:5V;VOH=2.4V;VOL=2V;VIL=2.4V;VOL=2V;VIL=2.0V;VOL=1.7V;VIL=4.45V;VOL=3.5V;VIL=3.2V;VOL=2.0V;VIL=2V;VOL=1.7V;VIL=1.1V;VOL=0.85V;VIL=1.4V;VOL=1.2V;VIL=0.8VHSTL是主要用于QDR存储器的一种电平标

    7、准:一般有V¬CCIO=1.8V和V¬¬CCIO=1.5V。和上面的GTL相似,输入为输入为比较器结构,比较器一端接参考电平(VCCIO/2),另一端接输入信号。对参考电平要求比较高(1%精度)。SSTL主要用于DDR存储器。和HSTL基本相同。V¬¬CCIO=2.5V,输入为输入为比较器结构,比较器一端接参考电平1.25V,另一端接输入信号。对参考电平要求比较高(1%精度)。HSTL和SSTL大多用在300M以下。RS232和RS485基本和大家比较熟了,只简单提一下:RS232采用12-15V供电,我们电脑后面的串口即为RS232标准。+12V表示0

    8、,-12V表示1。可以用MAX3232等专用芯片转换,也可以用两个三极管加一些外围电路进行反相和电压匹配。RS485是一种差分结构,相对RS232有更高的抗干扰能力。传输距离可以达到上千米。载波生成的基本原理载波生成由基准时钟、相位累加器、相位寄存器、相位/幅值查找表(ROM)组成。工作过程是预先在ROM中存入正弦或余弦波形的幅度编码,每来一个时钟信号,N 位的相位累加器将频率控制字K与相位寄存器的输出累加,同时,相位寄存器输出序列的高M位去寻址相位/幅值查找表,得到一系列离散的幅度编码。载波的输出信号频率为,频率分辨率为。TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价

    9、于逻辑“1”,0V等价于逻辑“0”,计算机处理器控制的设备内部各部分之间通信的标准技术。TTL电平信号对于计算机处理器控制的设备内部的数据传输非常理想。TTL型通信大多数情况下,是采用并行数据传输方式。与CMOS管差异: 1.CMOS是场效应管构成,TTL为双极晶体管构成2.CMOS的逻辑电平范围比较大(515V),TTL只能在5V下工作3.CMOS的高低电平之间相差比较大、抗干扰性强,TTL则相差小,抗干扰能力差4.CMOS功耗很小,TTL功耗较大(15mA/门) 5.CMOS的工作频率较TTL略低,但是高速CMOS速度与TTL差不多相当简单理解: TTL电平,TTL的电源工作电压是5V,所

    10、以TTL的电平是根据电源电压5V来定的。CMOS电平,CMOS的电源工作电压是3V - 18V,CMOS的电源工作电压范围宽,如果你得CMOS的电源工作电压是12V,那么这个CMOS的输入输出电平电压要适合12V的输入输出要求。即CMOS的电平,要看你用的电源工作电压是多少,3v - 18V,都在CMOS的电源工作电压范围内,具体数值,看你加在CMOS芯片上的电源工作电压是多少。LVDS针脚定义20PIN单6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空

    11、 18空 19 空 20空每组信号线之间电阻为(数字表120欧左右)20PIN双6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+每组信号线之间电阻为(数字表120欧左右)20PIN单8定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:R3-

    12、17:R3+每组信号线之间电阻为(数字表120欧左右)30PIN单6定义:1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表120欧左右)30PIN单8定义:1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2

    13、+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表120欧左右)30PIN双6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:地 17:RS0- 18:RS0+ 19:地 20:RS1- 21:RS1+ 22:地 23:RS2- 24:RS2+ 25:地 26:CLK2- 27:CLK2+每组信号线之间电阻为(数字表120

    14、欧左右)30PIN双8定义:1:电源2:电源3:电源 4:空 5:空 6:空 7:地 8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地 15:CLK- 16:CLK+ 17:地 18:R3- 19:R3+ 20:RB0-21:RB0+ 22:RB1- 23:RB1+ 24:地 25:RB2- 26:RB2+ 27:CLK2- 28:CLK2+ 29:RB3- 30:RB3+每组信号线之间电阻为(数字表120欧左右)一般14PIN、20PIN、30PIN为LVDS接口。2 LVDS工作原理及技术优势2.1 LVDS工作原理驱动器由一个恒流源(通常为3.5m

    15、A)驱动一对差分信号线组成。在接收端有一个高的直流输入阻抗(几乎不会消耗电流),几乎全部的驱动电流将流经100的接收端电阻在接收器输入端产生约350mV的电压。当驱动状态反转时,流经电阻的电流方向改变,于是在接收端产生有效的“0”或“1”逻辑状态。图1 LVDS信号传输组成图LVDS信号传输一般由三部分组成:差分信号发送器,差分信号互联器,差分信号接收器。差分信号发送器:将非平衡传输的TTL信号转换成平衡传输的LVDS信号。通常由一个IC来完成,如:DS90C031差分信号接收器:将平衡传输的LVDS信号转换成非平衡传输的TTL信号。通常由一个IC来完成,如:DS90C032差分信号互联器:包

    16、括联接线(电缆或者PCB走线),终端匹配电阻。按照IEEE规定,电阻为100欧。我们通常选择为100,120欧。LVDS物理接口使用1.2V偏置电压作为基准,提供大约400mV摆幅。LVDS驱动器由一个驱动差分线对的电流源组成(通常电流为3.5mA),LVDS接收器具有很高的输入阻抗,因此驱动器输出的电流大部分都流过100的匹配电阻,并在接收器的输入端产生大约350mV 的电压。电流源为恒流特性,终端电阻在100120欧姆之间,则电压摆动幅度为:3.5mA * 100 = 350mV ;3.5mA * 120 = 420mV 。由逻辑“0”电平变化到逻辑“1”电平是需要时间的。由于LVDS信号

    17、物理电平变化在0。851。55V之间,其由逻辑“0”电平到逻辑“1”电平变化的时间比TTL电平要快得多,所以LVDS更适合用来传输高速变化信号。其低压特点,功耗也低。2.2 LVDS技术优势(1)高速度:LVDS技术的恒流源模式低摆幅输出意味着LVDS能高速切换数据。例如,对于点到点的连接,传输速率可达数百Mbps。(2)高抗噪性能:噪声以共模方式在一对差分线上耦合出现,并在接收器中相减从而可消除噪声。这也是差分传输技术的共同特点。(3)低电压摆幅:使用非常低的幅度信号(约350mV)通过一对差分PCB走线或平衡电缆传输数据。LVDS的电压摆幅是PECL的一半,是RS-422的1/10;由于是

    18、低摆幅差分信号技术,其驱动和接收不依赖于供电电压,因此,LVDS可应用于低电压系统中,如5V、3.3V甚至2.5V。(4)低功耗:接收器端的100阻抗功率仅仅为1.2mV。RS-422接收器端的100阻抗功率为90mV,是LVDS的75倍!LVDS器件采用CMOS工艺制造,CMOS工艺的静态功耗极小。LVDS驱动器和接收器所需的静态电流大约是PECL/ECL器件的1/10。LVDS驱动器采用恒流源驱动模式,这种设计可以减少1cc中的频率成分。从1cc与频率关系曲线图上可以看到在10MHz100MHz之间,曲线比较平坦;而TTL/CMOS以及GTL接收器件的动态电流则随着频率地增加呈指数增长,因

    19、为功率是电流的二次函数,所以动态功耗将随着频率的提高而大幅度提高(见图2)。(5)低成本:LVDS芯片是标准CMOS工艺实现技术,集成度高;接收端阻抗小,连线简单,节省了电阻电容等外围元件;低能耗;LVDS总线串行传输数据,LVDS芯片内部集成了串化器或解串器,与并行数据互联相比,节省了约50%的电缆、接口及PCB制作成本。此外,由于连接关系大大简化,也节省了空间。(6)低噪声:由于两条信号线周围的电磁场相互抵消,故比单线信号传输电磁辐射小得多。恒流源驱动模式不易产生振铃和切换尖锋信号,进一步降低了噪声。2.3 差分信号抗噪特性从差分信号传输线路上可以看出,若是理想状况,线路没有干扰时,在发送

    20、侧,可以形象理解为:IN=IN+-IN-在接收侧,可以理解为:IN+-IN-=OUT所以:OUT=IN在实际线路传输中,线路存在干扰,并且同时出现在差分线对上,在发送侧,仍然是:IN=IN+-IN-线路传输干扰同时存在于差分对上,假设干扰为q,则接收则:(IN+q)-(IN-q)=IN+-IN-=OUT所以:OUT=IN噪声被抑止掉。上述可以形象理解差分方式抑止噪声的能力。在实际芯片中,是在噪声容限内,采用“比较”及“量化”来处理的。LVDS接收器可以承受至少1V的驱动器与接收器之间的地的电压变化。由于LVDS驱动器典型的偏置电压为+1.2V,地的电压变化、驱动器偏置电压以及轻度耦合到的噪声之

    21、和,在接收器的输入端相对于接收器的地是共模电压。这个共模范围是:+0.2V+2.2V。建议接收器的输入电压范围为:0V+2.4V。抑止共模噪声是DS(差分信号)的共同特性,如RS485,RS422电平,采用差分平衡传输,由于其电平幅度大,更不容易受干扰,适合工业现场不太恶劣环境下通讯。3 应用发展LVDS信号在PCB上的设计由LVDS信号的工作原理及特点可以看出:LVDS信号不仅是差分信号,而且还是高速数字信号;因此LVDS传输媒质不管使用的是PCB线对还是电缆,都必须采取措施防止信号在媒质终端发生反射,同时应减少电磁干扰以保证信号的完整性。只要我们在布线时考虑到以上这些要素,设计高速差分线路

    22、板并不很困难。下面将简要介绍LVDS信号在PCB 上的设计要点:1.布成多层板。有LVDS信号的印制板一般都要布成多层板。由于LVDS信号属于高速信号,与其相邻的层应为地层,对LVDS信号进行屏蔽防止干扰。另外密度不是很大的板子,在物理空间条件允许的情况下,最好将LVDS信号与其它信号分别放在不同的层。例如,对于四层板,通常可以按以下进行布层:LVDS信号层、地层、电源层、其它信号层。 2.LVDS信号阻抗计算与控制。LVDS信号的电压摆幅只有350 mV,适于电流驱动的差分信号方式工作。为了确保信号在传输线当中传播时不受反射信号的影响,LVDS信号要求传输线阻抗受控,通常差分阻抗为(1001

    23、0)。阻抗控制的好坏直接影响信号完整性及延迟。如何对其进行阻抗控制呢? 、确定走线模式、参数及阻抗计算。LVDS分外层微带线差分模式和内层带状线差分模式两种,分别如图2、图3所示。通过合理设置参数,阻抗可利用相关阻抗计算软件(如POLAR-SI6000、CADENCE的ALLEGRO)计算也可利用阻抗计算公式计算。图2、图3为POLAR-SI6000阻抗计算软件计算阻抗值。阻抗计算公式计算阻抗。以上微带线和带状线种方式阻抗计算公式分别为:(i)微带线(microstrip)Z=87/sqrt(r+1.41)ln5.98H/(0.8W+T)其中,W为线宽,T为走线的铜皮厚度,H为走到参考平面的距

    24、离,r是PCB板材质的介电常数(dielectric Constant)。此公式必须在0.1(W/H)2.0及1(r)15的情况才能应用。(ii)带状线(stripline)Z=60/sqrt(r)ln4H/0.67(T+0.8W)其中,H为两参考平面的距离,并且走线位于参考平面的中间。此公式适应于双线,线间距与抗成正比,必须在W/H0.35及T/H0.25的情况才应用。由上面两公式可以看出,虽然其计算公式各不同,但阻抗值均与绝缘层厚度成正比,与介电常数、线的厚度及宽度成反比。、走平行等距线(如图4)。确定走线线宽及间距,在走线时要严格按照计算出的线宽和间距,两线间距要一直保持不变,也就是要保

    25、持平行(如图4示)。平行的方式有两种: 一种为两条线走在同一线层(side-by-side),另一种为两条线走在上下相两层(over-under)。一般尽量避免使用后者即层间差分信号,因为在PCB板的实际加工过程中,由于层叠之间的层压对准精度大大低于同层蚀刻精度,以及层压过程中的介质流失,不能保证差分线的间距等于层间介质厚度,会造成层间差分对的差分阻抗变化。困此建议尽量使用同层内的差分。3.紧耦合原则。在计算线宽和间距时最好遵守紧耦合的原则,也就是差分对线间距小于或等于线宽。当两条差分信号线距离很近时,电流传输方向相反,其磁场相互抵消,电场相互耦合,电磁辐射也要小得多。 4.走短线、直线。为确

    26、保信号的质量,LVDS差分对走线应该尽可能地短而直,减少布线中的过孔数,避免差分对布线太长,出现太多的拐弯,拐弯处尽量用45或弧线,避免90拐弯。 5.不同差分线对间处理。LVDS对走线方式的选择没有限制,微带线和带状线均可,但是必须注意要有良好的参考平面。对不同差分线之间的间距要求间隔不能太小,至少应大于35倍差分线间距。必要时在不同差分线对之间加地孔隔离以防止相互问的串扰。 6.LVDS信号远离其它信号。对LVDS信号和其它信号比如TTL信号,最好使用不同的走线层,如果因为设计限制必须使用同一层走线,LVDS和TTL的距离应该足够远,至少应大于35倍差分线间距。 7.LVDS差分信号不可以跨平面分割。尽管两根差分信号互为回流路径,跨分割不会割断信号的回流,但是跨分割部分的传输线会因为缺少参考平面而导致阻抗的不连续(如图5箭头处所示,其中GND1、GND2为LVDS相邻的地平面)。 8.接收端的匹配电阻的布局。对接收端的匹配电阻到接收管脚的距离要尽量靠近。如图5的矩形处为接收端的匹配电


    注意事项

    本文(技术报告lvds差分电平标准技术报告V100329解读.docx)为本站会员主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 冰点文档网站版权所有

    经营许可证编号:鄂ICP备2022015515号-1

    收起
    展开