欢迎来到冰豆网! | 帮助中心 分享价值,成长自我!
冰豆网
全部分类
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • 党团工作>
  • ImageVerifierCode 换一换
    首页 冰豆网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    Swarm系列卫星非差运动学厘米级精密定轨Word文件下载.docx

    • 资源ID:17139861       资源大小:1.13MB        全文页数:15页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Swarm系列卫星非差运动学厘米级精密定轨Word文件下载.docx

    1、Swarm系列卫星精密定轨不仅是整个Swarm星群计划顺利实施的关键,也是有效利用卫星荷载开展地磁场反演等相关科学研究的前提条件。Swarm卫星上搭载了一系列先进的科学仪器。为了探测地球磁场的强度和方向,每颗Swarm卫星安装有矢量磁力仪和标量磁力仪;地球的电场信息则通过相应的电场仪器设备测量,该设备由朗缪尔探针和热离子成像仪组成;Swarm卫星上安装有加速度计,主要用于测量Swarm卫星非保守力加速度,该数据不仅用于获取热层密度和风的一些信息,还可以用该数据参与地球重力场恢复工作;Swarm卫星上的星载GPS接收机主要用于Swarm卫星精密轨道的确定;Swarm卫星上的激光反射棱镜观测的数据

    2、用于检核Swarm卫星轨道3。Swarm卫星星载GPS观测数据和解算得到的轨道不仅可以用于地磁场位置标定,也可以用于电离层研究、热层密度的确定及地球重力场的恢复等4。近年来,低轨卫星运动学定轨引起了学者们的极大兴趣。与简化动力学定轨相比,运动学定轨方法不采用任何低轨卫星动力学信息(如重力场、大气阻力等)。因此,运动学定轨结果可用于反演地球重力场模型3,5。Swarm卫星发射之后,国外学者围绕Swarm卫星定轨展开相关学术研究。文献2利用超过一年的星载GPS观测数据进行Swarm卫星运动学和简化动力学定轨。SLR检核结果表明,欧空局发布的简化动力学轨道精度约为2.5 cm,运动学定轨精度约为4

    3、cm;运动学轨道与简化动力学轨道3D差值RMS为45 cm,在地磁极和地磁赤道的轨道差异会更大。文献5解算18个月的Swarm卫星运动学轨道,并进行重力场恢复工作。文献3利用PPP技术开展Swarm卫星运动学定轨工作,取得了较好的定轨结果。国内方面,相关学者开展Swarm卫星简化动力学定轨的相关研究。文献6研究天线相位中心改正及其对Swarm卫星简化动力学定轨的影响。文献7研究伪随机脉冲先验标准差对Swarm卫星简化动力学定轨的影响。此外,文献8-9利用优化的伪随机脉冲进行Swarm卫星简化动力学定轨,定轨结果与欧空局发布的轨道结果精度相当。国内学者主要研究Swarm卫星简化动力学定轨,而关于

    4、Swarm卫星非差运动学精密定轨的相关研究却鲜见报道。由于GRACE卫星已于2017年6月停止工作,而GRACE Follow-On于2018年5月成功发射,相关数据最早于2019年才公布,在此期间,Swarm卫星将填补因GRACE无法工作与GRACE Follow-On公布数据之前的空白,继续监测地球重力场信号10。而恢复地球重力场模型需要Swarm卫星运动学精密轨道。因此,自主开展Swarm卫星非差运动学精密定轨和精度评定等相关研究有很强的现实意义。本文采用2015年5月24日-30日的Swarm星载GPS双频观测数据,基于MW和消电离层线性组合,在精密单点定位技术的基础上,采用批处理最小

    5、二乘估计法对不同轨道高度的Swarm系列卫星进行非差运动学精密定轨。检验运用Swarm星载GPS双频观测值进行非差运动学精密定轨的可行性方案与定轨结果的可靠性。1 Swarm卫星非差运动学定轨原理与方法1.1 星载双频GPS载波相位观测模型Swarm星载GPS双频接收机测量两种不同频率的载波相位,基本的相位观测方程如下11(1)式中,F=1,2,代表两种不同频率;k代表Swam-A、Swarm-B和Swarm-C;i代表GPS卫星;k代表GPS卫星到Swarm卫星的几何距离;ki包含所有的延迟项;c为光速;k为信号接收时刻Swarm卫星星载GPS接收机钟差改正;i为信号发射时刻GPS卫星钟差改

    6、正;为波长;n为整周模糊度。为了消除电离层延迟的影响,本文对相位观测方程进行消电离层组合,结果如式(2)所示11(2)综合考虑式(1)和式(2),Swarm卫星非差消电离层组合相位观测方程为(3)式中,Lk, 3i表示消电离层相位观测值;k, 3表示消电离层Swarm卫星接收机钟差;i, 3表示消电离层GPS卫星钟差;Bk, 3i表示消电离层相位模糊度;k, 3包含消电离层后所有的延迟项。式(3)中的相位非差观测值是相对于天线相位中心的,而CODE中心提供的GPS精密星历是相对于卫星质心的,因此需要将GPS卫星位置改正到天线相位中心,并在精密定轨时将其作为位置基准,在此基础上,综合考虑相对论效

    7、应、天线相位中心改正以及地球旋转效应等因素的影响,采用批处理最小二乘估计法进行轨道参数估计,进而获得Swarm卫星非差运动学轨道。目前最小二乘估计法是卫星精密定轨最主要的方法之一,该方法解算精度高且稳定,主要应用于高精度事后精密定轨。由于Swarm卫星运动学定轨的主要目的之一是为了解算地球静态和月时变重力场模型提供精密轨道12-21,因此,该方法在Swarm卫星运动学定轨中有广泛的应用。学者们围绕Swarm卫星运动学定轨工作展开了一系列的研究工作。文献12在精密单点定位的基础上,综合考虑各种系统误差的影响,直接采用原始的伪距和相位观测值进行批处理最小二乘估计,进而获得Swarm卫星运动学轨道,

    8、获得了厘米级的定轨精度,该方法中观测值无须进行线性组合。文献2利用GNSS高精度的定轨软件(GNSS high-precision orbit determination software tools,GHOST)进行Swarm卫星运动学定轨。该软件采用非差观测值和标准贝叶斯加权最小二乘估计法,定轨精度达到厘米级,欧空局发布的轨道即此软件计算得到。文献13采用非差相位观测值,综合考虑天线相位中心改正、相对论效应改正以及其他影响轨道精度的误差改正等因素,采用最小二乘估计法估计Swarm卫星运动学轨道和相关的参数(如接收机钟差参数和载波相位模糊度参数等),定轨精度也达到了厘米级。本文为了实现自主定

    9、轨的需要,围绕Swam卫星非差运动学精密定轨展开研究,与已有的运动学定轨工作相比,主要集中体现在观测数据的预处理以及定轨解算策略的选取等方面有所差异。1.2 数据来源与解算策略1.2.1 数据来源采用欧空局提供的Swarm星载双频GPS观测值、欧洲定轨中心提供的15 min采样间隔的GPS事后精密星历、地球自转参数(earth rotation parameter, ERP)以及5 s采样间隔的GPS卫星精密钟差等数据,由于Swarm卫星的一个重返轨道为4 d22,因此,本文选取一个星期的观测数据参与解算,时间段为2015年5月24日-30日(DOY 144-150),定轨弧长为24 h。1.

    10、2.2 解算策略根据Swarm卫星非差运动学精密定轨的基本原理可知,与相位观测值有关的因素均会影响到最终的定轨结果,根据来源不同,本文制定了详细的解算策略。(1) 提高观测数据的质量。“干净”的Swarm卫星相位观测值是非差运动学精密定轨的前提条件。本文联合MW线性组合和消电离层组合对伪距和相位观测值粗差和周跳进行探测23。此外,消电离层相位和伪距组合还可以有效消除电离层延迟的影响,其中伪距观测值仅用于初始轨道的确定,消电离层相位观测值采用COMBINED算法进一步对周跳进行有效探测11,如果历元周跳探测后仍不能有效改正,则在此处加入一个模糊度参数,从而获得“干净”的非差消电离层相位观测值。(

    11、2) 由于GPS卫星星历和钟差具有空间位置基准的作用,产品精度的好坏会直接影响Swarm卫星非差运动学定轨精度。因此,本文采用欧洲定轨中心发布的GPS事后精密星历和卫星钟差参与非差运动学轨道解算。(3) 相位观测值权重。第1种方案为所有相位观测值权重相同,第2种方案为相位观测值权重采用与高度角e相关的函数:W(e)=cos2(e),第3种方案为相位观测值权重采用与高度角e相关的函数:W(e)=cos4(e)。(4) Swarm星载GPS双频非差消电离层相位观测值作为基本观测值,相位观测值先验标准差设置为1 mm,引入以上3种不同的相位观测值权重方案,综合考虑相对论效应、天线相位中心改正、相位缠

    12、绕、硬件延迟以及地球旋转效应等因素的影响,批处理最小二乘法24-25和参数预消除技术11用于未知参数的估计,包括Swarm卫星位置和钟差以及模糊度参数等。为了获取较好的相位观测值权重,本文选取2015年5月24日1 d的Swarm-A/B/C卫星观测数据参与3种相位观测值权重方案的计算,分别将3种权重方案获得的定轨结果欧空局发布的简化动力学轨道进行对比分析。结果如图 1所示。由图 1所知,3种权重方案均能让Swarm-A/B/C卫星1D RMS达到了厘米级,此外,对于Swarm-A/B/C卫星,方案2获得的定轨精度优于方案1和方案3,因此,本文选取方案2作为相位观测值的权重函数参与计算。综上所

    13、述,本文Swarm系列卫星非差运动学定轨数据处理策略见表 1。图 1Swarm系列卫星3种权重方案定轨精度统计Fig. 1Orbit determination accuracy statistics of three weight schemes of Swarm satellites图选项表 1Swarm系列卫星非差运动学定轨数据处理策略Tab. 1Processing strategy of undifferenced kinematic orbit determination for Swarm satellites项目具体内容相关参数伪距观测值仅用于初始轨道确定相位观测值参与精密轨道

    14、确定10 s采样间隔高度角定权函数cos2(e)相对论效应改正IERS2010高度截止角为3GPS相位模型为IGS08.ATX欧洲定轨中心发布的GPS精密卫星轨道(15 min)和钟差(5 s)Swarm相位模型为Swarm PCO和PCV map2定轨弧长为24 h参考框架IGS08IERS2010欧洲定轨中心发布的地球自转参数(ERP)欧空局发布的Swarm卫星姿态数据估计方法批处理最小二乘估计法表选项2 Swarm系列卫星非差运动学定轨精度评估当前,低轨卫星轨道精度评估方法一般分为内符合精度评估和外符合精度评估。内符合精度评估的基本方法是依据低轨卫星定轨过程中获取的相关数据或结果进行对比

    15、分析,例如对观测值残差进行统计分析8。外符合精度评估的基本方法是通过与国际权威机构发布的轨道进行对比分析或者利用未参与精密定轨的其他观测数据(如卫星激光测卫数据)进行精度评估。本文将从内符合精度和外符合精度两个方面全面评估Swarm系列卫星非差运动学定轨精度。内符合精度评估:对星载GPS相位观测值残差进行统计分析。外符合精度评估:将本文Swarm系列卫星非差运动学定轨结果同欧空局发布的精密轨道进行对比分析。利用SLR观测数据独立检核Swarm卫星非差运动学轨道。2.1 相位观测值残差分析相位观测值残差是评价GPS定轨精度的指标之一8,当所采用的观测数据的质量及其预处理都很理想时,观测值残差接近

    16、观测噪声水平。图 2表示Swarm星载GPS相位观测值残差RMS,表 2表示Swarm-A/B/C系列卫星定轨后星载GPS非差相位观测值残差平均RMS,由图 2和表 2可知,不同年积日不同卫星的相位残差RMS分布在67 mm,Swarm-B卫星整体结果优于Swarm-A/C卫星。本文选取的观测模型与实际情况吻合较好;本文提供的星载GPS数据预处理方法可以较好地探测和处理周跳。图 2Swarm星载GPS相位观测值残差RMSFig. 2Residual RMS of spaceborne GPS phase observation for Swarm表 2Swarm星载GPS非差相位观测值残差RM

    17、STab. 2Satellite-borne GPS undifferenced phase observation residual RMSmmmm卫星相位观测值残差RMSSwarm-A7.0Swarm-B6.5Swarm-C6.62.2 Swarm非差运动学定轨结果与参考轨道对比分析2.2.1 与欧空局发布的简化动力学轨道对比分析荷兰代尔夫特理工大学航空工程学院作为卫星星群应用与研究机构(Swarm Satellite Constellation Application and Research Facility, SCARF)的成员之一,负责Swarm卫星精密定轨工作。该学院采用GHOS

    18、T软件解算Swarm-A/B/C卫星简化动力学轨道,利用地面SLR站观测数据检核该轨道,获得优于2 cm的轨道精度,定轨结果已在ESA网站上发布(swarm-diss.eo.esa.int)2。根据表 1给出的Swarm卫星非差运动学定轨策略,Swarm系列卫星非差运动学定轨结果与简化动力学轨道进行对比分析,结果见表 3和图 3-图 6。由图 3可以发现,在径向、切向及法向上,Swarm-A/B/C卫星轨道差值RMS均在24 cm,不同年积日不同卫星的定轨精度差异不大;由图 4-图 6和表 3可以发现,在径向、切向及法向上,Swarm-A/B/C卫星非差运动学定轨结果均无明显的系统误差,定轨精

    19、度也比较均匀,均为34 cm。因此,Swarm系列卫星径向、切向及法向上非差运动学定轨精度均优于5厘米,满足精度需求。表 3Swarm卫星非差运动学定轨结果与欧空局简化动力学轨道差值统计结果Tab. 3Statistical results of difference between Swarm kinematic orbits and ESA reduced-dynamic orbitscm径向切向法向-0.113.58-0.123.060.033.780.093.130.083.30-0.353.67-0.143.843.360.243.49注:每项的表达形式为平均值均方根误差。图 3Sw

    20、arm卫星非差运动学定轨结果与欧空局简化动力学轨道差值RMSFig. 3Difference RMS between Swarm kinematic orbits and ESA reduced-dynamic orbits图 4Swarm-A卫星非差运动学定轨结果与简化动力学轨道差值Fig. 4Difference between Swarm-A undifferenced kinematic orbits and reduced-dynamic orbits图 5Swarm-B卫星非差运动学定轨结果与简化动力学轨道差值Fig. 5Difference between Swarm-B und

    21、ifferenced kinematic orbits and reduced-dynamic orbits图 6Swarm-C卫星非差运动学定轨结果与简化动力学轨道差值Fig. 6Difference between Swarm-C undifferenced kinematic orbits and reduced-dynamic orbits2.2.2 与欧空局发布的运动学轨道进行对比分析欧空局发布的Swarm卫星运动学轨道是采用GHOST软件解算得到2,与本文定轨策略不同。该软件运动学精密定轨阶段同时考虑星载GPS伪距和相位观测值,为了消除一阶电离层的影响,采取消电离层组合获得消电离层

    22、相位观测值和消电离层伪距观测值,观测值定权方面未采用高度角定权,而是根据根据观测噪声的期望水平定权,消电离层相位观测值的先验值为1 mm,消电离层伪距观测值先验值为1 m;估计方法为标准贝叶斯加权最小二乘估计法。因此,将本文的运动学定轨结果与欧空局发布的运动学轨道进行对比分析,结果见表 4和图 7。由图 7可以发现,在径向、切向及法向上,Swarm-A/B/C卫星轨道差值RMS均在12 cm,不同年积日不同卫星的定轨精度差异不大;由图 7和表 4可以发现,在径向、切向及法向上,Swarm-A/B/C卫星非差运动学定轨结果均无明显的系统误差,与欧空局轨道相比,两者的轨道差值比较均匀,均为12 c

    23、m。因此,本文计算得到的Swarm系列卫星非差运动学轨道与欧空局发布的运动学轨道精度相当。表 4Swarm卫星非差运动学定轨结果与欧空局运动学轨道差值统计结果Tab. 4Statistical results of difference between Swarm kinematic orbits and ESA kinematic orbits-0.131.560.421.720.211.751.520.371.460.431.83-0.041.530.291.820.041.71图 7Swarm卫星非差运动学定轨结果与欧空局运动学轨道差值RMSFig. 7Difference STD be

    24、tween Swarm kinematic orbits and ESA kinematic orbits2.3 SLR检核Swarm卫星上安装了激光反射棱镜装置,地面观测站可以对其进行跟踪测量。SLR测距精度可达亚厘米级,此外,对于一些观测条件较好的SLR站,SLR测距精度为几个毫米,因此,SLR成为单次测距精度最高的空间大地测量技术之一26-27。由于SLR观测数据独立于星载GPS观测数据,因此,本文采用SLR技术对Swarm卫星轨道进行外部检核。SLR观测值对Swarm卫星运动学轨道进行外部检核的过程中,需要综合考虑各种改正模型,进而提高SLR检核的质量,具体的改正模型见表 5。表 5S

    25、LR检核Swarm卫星轨道过程中的改正模型Tab. 5Models for processing of satellite laser ranging data from Swarm satellites改正项来源SLR跟踪站位置SLRF2008固体潮和极潮改正海潮负载FES2004大气压负载APL model of Petrov and Boy28相对论效应偏心位移ECC_ILRS对流层延迟卫星质心改正ESA在2015年5月24日-30日期间,利用SLR观测值对Swarm卫星非差运动学轨道进行检核,SLR地面站的分布见图 8。SLR残差统计结果见图 9-图 11和表 5,图 9-图 11分别

    26、为利用SLR观测值检核Swarm-A、Swarm-B和Swarm-C卫星非差运动学轨道的残差图,表 6为相对应的SLR残差统计结果。由图 9-图 11以及表 6可知,Swarm-A/B/C卫星非差运动学定轨结果无明显的系统误差,定轨精度良好,其中,Swarm-A卫星非差运动学轨道精度为4.26 cm,Swarm-B卫星非差运动学轨道精度为3.86 cm,Swarm-C卫星非差运动学定轨结果为4.09 cm。图 8地面SLR跟踪站分布Fig. 8Distribution map of ground SLR tracking station图 9Swarm-A卫星非差运动学轨道的SLR残差值Fig

    27、. 9SLR residual values of Swarm-A undifferenced kinematic orbit图 10Swarm-B卫星运动学轨道的SLR残差值Fig. 10SLR residual values of Swarm-B undifferenced kinematic orbit图 11Swarm-C卫星运动学轨道的SLR残差值Fig. 11SLR residual values of Swarm-C undifferenced kinematic orbit表 6Swarm卫星非差运动学轨道的SLR残差统计结果Tab. 6Statistical results of SLR residual values for the Swarm undifferenced kinematic orbits测站数标准点数平均值/cm均方根误差/cm127960.394.26131947-0.423.86594-0.314.093 结论采用2015


    注意事项

    本文(Swarm系列卫星非差运动学厘米级精密定轨Word文件下载.docx)为本站会员主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 冰点文档网站版权所有

    经营许可证编号:鄂ICP备2022015515号-1

    收起
    展开