欢迎来到冰豆网! | 帮助中心 分享价值,成长自我!
冰豆网
全部分类
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • 党团工作>
  • ImageVerifierCode 换一换
    首页 冰豆网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    地下储气库的成本优化UGSWord文件下载.docx

    • 资源ID:17616876       资源大小:629.20KB        全文页数:25页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    地下储气库的成本优化UGSWord文件下载.docx

    1、地质力学岩体参数是由所选择的合适的UGS位置的地质条件和所产生的一个特殊有限元模型来确定的。该系统的岩体强度的稳定性和安全性是分析不同的设计参数,如内部气体压力,洞穴深处,洞穴直径和洞穴壁厚之间的各种组合确定的。其结果,地质力学区间近似并投入优化模型OPTUGS。以此方式,优化获得的不仅仅是最优解,而且该岩体能达到足够的强度稳定性和安全性。优化主要用于初步设计阶段。在本文的最后数值示例演示了引入优化方法的效果 。1. IntroductionHigh pressure gas reservoirs are typically designed in a cylindrical form fro

    2、m steel, pre-stressed concrete or composite walls. The construction of these type of structures is relatively difficult and expensive due to high internal pressures. Special care has to be paid to systems safety. For this reason, an idea to design underground gas storages was raised forty years ago.

    3、 In the beginning, engineers/researches designed gas or oil storage in deep aquifers or leaved wells. Since such solutions proved to be ineffective, the concept of high pressure underground gas storage (UGS), carried out by the technology of rock caverns, was promptly created and applied in praxis.1

    4、.引言 高压气储存罐通常被设计成由钢,预应力混凝土或复合壁制作的圆筒形。由于高的内部压力,这些类型的结构的建造是相当困难和昂贵的。特别注意是必须注意系统的安全性。出于这个原因,早在四十年前就有设计地下储气库的想法。在开始的时候,工程师/研究设计把天然气或石油储存在深部含水层或废弃井中。然而,由于这种解决方案被证明是无效的,通过岩洞的技术,高压地下储气库(UGS)的概念被及时建立并应用于实践中。There are two types of rock caverns used for this purpose: unlined rock caverns and lined rock caverns

    5、 (LRC). The main request in the designing and construction of rock caverns is the prevention of gas leaking from the storage. In the unlined rock cavern, gas is kept from escaping by ensuring that groundwater pressure in the surrounding rock exceeds the gas pressure in the storage 1. The required ga

    6、s pressure can be achieved by locating a cavern at a sufficient depth or by installing a water curtain around the cavern 2,3. The latter requires performing a comprehensive hydraulic analysis for gas containment of the storage terminal. By contrast to the unlined rock cavern, the concept of the line

    7、d rock cavern, LRC, is an UGS of gas at high pressure, supported by the surrounding rock 47. The main idea of the LRC is to prevent the gas leakage from the cavern by a thin steel lining. In normal conditions, the LRC is completely impermeable and no extra analysis for gas containment is needed.有两种类

    8、型的岩洞中用于此目的:单衣岩洞和内衬岩洞(LRC)。在设计和建设岩洞的主要要求是防止存储的气体发生泄漏。在该无内衬岩洞,气体通过确保围岩的地下水压力总大于存储气的气体压力。所需的气体压力可以通过一个定位在洞穴足够深或者洞穴周围上安装水帘来实现。后者需要对存储终端的气体遏制进行全面的水力分析。与的单衣岩洞相反,内衬岩石洞穴,LRC,是在由围岩支持下的高压气体的地下储气库UGS。LRC的主要理论是,防止由于洞穴内的薄钢板内层发生的气体泄漏。在正常情况下,LRC是完全不透水,并且不需要对气体容器进行额外的水力分析。The UGS, considered in this paper, is plann

    9、ed to be constructed with one or more LRCs. The structure of the LRC is simple: its reservoir wall is designed from a concrete wall and a steel lining. Although the concrete wall is reinforced, it just transports the gas pressure from the cavern onto the surrounding rock. The same holds for the stee

    10、l lining, which only enables impermeability (sealing). The LRC load capacity is thus provided by the surrounding rock only.本文所考虑的是,UGS是计划用一种或多种LRC结合构成的。LRC的结构很简单:它的储存器壁是由混凝土墙和钢材衬里设计。虽然水泥墙得到加固,但它只是将洞穴内的气体压力转移到周围的岩石上。这同样适用于钢内衬,这使抗渗性(密封)。LRC负荷能力仅由围岩提供。To improve the economic effectiveness of the UGS de

    11、signed with LRCs, this paper introduces a cost optimization of the UGS structure. Since a recent attempt 8 was based on the optimization of a single gas cavern only, this research handles the optimization of the entire UGS with any selected number of caverns. The optimization is performed by the non

    12、-linear programming (NLP) approach. For this purpose, the NLP optimization model is developed. Since the optimization is proposed to be performed for the phase of the preliminary design, only some basic conditions are defined in the optimization model in order to assure sufficient strength safety of

    13、 the rock mass and impermeability of the cavern wall and steel lining. The latter is achieved by the limitation of the steel lining and concrete wall stains. The primary objectives of the proposed optimization are:为了提高LRC设计的UGS的经济效益,本文介绍了UGS建设的成本优化。由于最近的尝试8是基于仅单个气体洞穴的优化,本研究处理整个任何选定数目洞穴的UGS的优化。为了这个目的

    14、,非线性规划优化模型发展了起来。由于优化被提议用于初步设计的阶段,在优化模型中,只是一些基本条件被定义,以便确保岩体足够强度的安全性和洞穴壁、钢衬里的抗渗能力。后者是由钢衬里和混凝土墙污渍的限制来实现的。建议优化的主要目标是: Minimization of the investment costs of the UGS system, Storing the highest possible quantity of gas under high pressure, Ensuring the safety of the UGS at the time of construction and s

    15、ervice, Calculation of the inner gas pressure, the cavern depth, the cavern inner diameter, thickness of the cavern concrete wall and the height of the cavern tube in the optimization.最小化UGS系统的投资成本,存储在高压下气体的可能的最高量,确保UGS在施工和服务时的安全,在优化中内部气体压力计算,洞穴深度,洞穴内直径,洞穴混凝土墙的厚度和洞穴管道的高度。In order to achieve the abov

    16、e mentioned objectives, the geotechnical problem is proposed to be solved simultaneously. Hence, geomechanical rock mass properties are determined from investigations in the field and in the laboratory. Many methods were in the past developed for determining of rock mass properties. In this work the

    17、 generalized HoekBrown failure criterion 9 is proposed to be applied and the MohrCoulomb strength parameters (the cohesion and the friction angle) are determined. In addition, the rock mass tensile strength, the uniaxial rock mass compressive strength, the global rock mass compressive strength and t

    18、he rock mass deformation modulus are calculated. After the geomechanical rock mass parameters are determined for a selected UGS location, a special FE model is proposed to be generated. The strength stability of the rock mass and the safety of the system are then calculated/analyzed for various desi

    19、gn parameters like inner gas pressures, cavern depth, cavern diameters and different cavern wall thickness. As a result,geomechanical constraints including the allowable safety/stability factors and strains of the system structure are in dependence of the mentioned design parameters proposed to be d

    20、efined and put intothe optimization model. 为了实现上述目标,同时也可以解决所遇到的岩土问题。因此,地质力学岩体性质从现场和实验室研究来确定。过去许多方法都是为了确定的岩体性质制定的。在这项工作中要应用广义霍克一布朗破坏准则9并且确定莫尔一库仑强度参数(凝聚力和内摩擦角)。此外,还有岩体抗拉强度,单轴岩体抗压强度,全球岩体抗压强度和岩体变形模量的计算。在确定一个已选择的UGS位置的地质力学岩体参数之后,产生了一种特殊的有限元模型。岩体和系统的安全性的强度稳定性然后计算/关于各种设计参数,如内部气体压力,洞穴深度,洞穴的直径和不同的洞穴壁厚分析。其结果,

    21、地质力学的限制包括可允许安全/稳定的因素,并且系统结构的张力依赖于所提到的拟限定并投入的设计参数的优化模型。2. Underground gas storage (UGS)The paper deals with the underground gas storage (UGS) designed from one or more lined rock caverns (LRC), see Fig. 1. The LRC is a pressure tank containing gas stored under high pressure. The gas pressure is trans

    22、mitted through the cavern wall to the surrounding rock. The rock provides the LRC capacity. The system of tunnels is designed in order to transport materials and allow access for machinery during the construction of the underground chambers. The LRCs are linked with the ground surface by vertical sh

    23、afts. The shaft steel pipes are made for filling and emptying thegas storage. The design of the considered LRC structure is typical. It consists of the cylindrical wall and the upper and lower spheres, see Fig. 2. The caverns are typically 50 to 100 m high and are located at depths from 100 to 300 m

    24、. Their concept involvesrelatively large diameters: between 10 and 50 m. The concrete wall is 2 or more meters thick, the thickness of the steel lining amounts from 12 to 15 mm. The concrete wall uniformly transmits the internal pressure to the rock and consequently uniformly distributes the deforma

    25、tions. The reinforcement in the concrete prevents tangential deformations. The task of the steel lining is to seal and to bridge small cracks of the concrete. The drainage system is installed on the outer side of the cavern wall. It drains the water and enables the monitoring, collection and removal

    26、 of the gas in case of gas leakage.2. 地下储气库(UGS) 本文论述了由一个或多个内衬岩洞(LRC)设计的地下储气库(UGS),见图 1。 LRC是含有高压状态储存的气体的压力罐。气体压力通过洞穴壁传递到周围的岩石。岩石提供了LRC能力。隧道的系统的目的是在地下腔室中的施工过程中输送的材料,并允许用的机械。 LRC与垂直轴地面相连。轴钢管被用于填充和排空储气库。所考虑的LRC结构的设计是典型的。它由圆筒形壁和上,下球组成的,见图 2。洞穴通常高为50至100微米,深度为100至300微米。它们的概念涉及相对较大的直径:1050微米。混凝土墙厚2以上米,钢衬

    27、厚度为12至15毫米。混凝土墙均匀转移的内部压力到岩石,从而均匀分布的变形。在混凝土中的加强防止切向变形。钢衬里的任务是,以密封和弥合混凝土的小裂缝。排水系统安装在洞穴壁的外侧。它排泄水并且在万一发生气体泄漏时起到监测,收集和除去气体的作用。The external pressure of the rock mass (between 1 to 3 MPa) acts on the cavern wall during construction and operation. It depends on the depth of the cavern (between 100 and 300 m

    28、). The internal pressure of the gas cyclically increases and decreases during periods of gas supply and discharge between the minimal (3 MPa) and maximal (calculated) value. The internal pressure therefore causes static and cyclic loads. The lifetime of the LRC is typically designed to be higher than 500 cycles.在建设和操作过程中,岩体(1之间3兆帕)的外部压力作用的洞穴壁。这取决


    注意事项

    本文(地下储气库的成本优化UGSWord文件下载.docx)为本站会员主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 冰点文档网站版权所有

    经营许可证编号:鄂ICP备2022015515号-1

    收起
    展开