欢迎来到冰豆网! | 帮助中心 分享价值,成长自我!
冰豆网
全部分类
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • 党团工作>
  • ImageVerifierCode 换一换
    首页 冰豆网 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    仿生机械学-第2版-第八章-仿动物飞行的机械及设计.ppt

    • 资源ID:30853317       资源大小:18.95MB        全文页数:50页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    仿生机械学-第2版-第八章-仿动物飞行的机械及设计.ppt

    1、第三篇仿生机械设计与分析2第八章仿动物飞行的机械及设计3第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述第一节第一节 飞行动物概述飞行动物概述 鸟类9000种飞行动物其他类蝙蝠、飞鼠昆虫类100万种大部分会飞以下分别介绍:以下分别介绍:4第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述一、昆虫一、昆虫 1 1、飞行昆虫的共同点、飞行昆虫的共同点 (1 1)都有六条腿)都有六条腿 (2 2)都有两对翅膀)都有两对翅膀(3 3)翅膀是带有翅脉的膜状结构)翅膀是带有翅脉的膜状结构 前足,中足、后足前足,中足、后足 各一对各一对苍蝇后翅退化苍蝇后翅退化有些昆虫前翅有

    2、些昆虫前翅演化为鞘翅演化为鞘翅 鞘翅鞘翅5第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述2 2、昆虫的翅膀、昆虫的翅膀 翅膀是昆虫飞行的工具,也是设计仿生昆虫的关键。有必要研究昆虫翅膀的结构。翅膀是昆虫飞行的工具,也是设计仿生昆虫的关键。有必要研究昆虫翅膀的结构。(1 1)翅脉翅膜与脉相)翅脉翅膜与脉相 (翅膀上在纵横交错的角质结构,称翅脉;翅脉的分布形式称脉相。翅膀上的角质膜,(翅膀上在纵横交错的角质结构,称翅脉;翅脉的分布形式称脉相。翅膀上的角质膜,称为翅膜。称为翅膜。蝉的翅膀蝉的翅膀 蝴蝶翅膀蝴蝶翅膀 蝗虫翅膀蝗虫翅膀6第八章仿动物飞行的机械及设计第一节第一节 飞行动

    3、物概述飞行动物概述(2 2)翅脉结构与类型)翅脉结构与类型 翅膀结构:除鞘翅外,担任飞行翅膀的结构基本相同,以蜻蜓翅膀为例:翅膀结构:除鞘翅外,担任飞行翅膀的结构基本相同,以蜻蜓翅膀为例:翅脉分为前缘翅脉、中部翅脉、次翅脉、后缘翅脉翅尖等,最新研究表明,翅脉中翅脉分为前缘翅脉、中部翅脉、次翅脉、后缘翅脉翅尖等,最新研究表明,翅脉中有血管分布。细长翅膀的蜻蜓还有翅痣。有血管分布。细长翅膀的蜻蜓还有翅痣。鞘翅鞘翅7第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述不同昆虫,翅膀结构与形状有很大不同,前后翅膀大小也不相同。不同昆虫,翅膀结构与形状有很大不同,前后翅膀大小也不相同。有些

    4、昆虫前翅骨化为鞘翅,看不到翅脉,如甲壳虫;有些骨化较轻,可见翅脉,如蝗虫有些昆虫前翅骨化为鞘翅,看不到翅脉,如甲壳虫;有些骨化较轻,可见翅脉,如蝗虫类,称为覆翅;有些后翅退化为平衡棒,如苍蝇、蚊子等。类,称为覆翅;有些后翅退化为平衡棒,如苍蝇、蚊子等。蜻蜓翅膀蝴蝶翅膀甲壳虫翅膀蝗虫翅膀蝉的翅膀苍蝇翅膀鞘翅鞘翅平衡棒8第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述 昆虫翅膀的类型,大致可分为昆虫翅膀的类型,大致可分为 A A 膜翅:角质膜膜翅:角质膜 B B 缨翅:边缘有毛缨翅:边缘有毛 C C 毛翅:膜面上有毛毛翅:膜面上有毛 D D 鳞翅:膜面有鳞状物鳞翅:膜面有鳞状物

    5、E E 覆翅:前翅骨化低,覆翅:前翅骨化低,可见翅脉可见翅脉 H H 平衡体:后翅退化为棒状平衡体:后翅退化为棒状 F F 半鞘翅:翅根鞘翅,半鞘翅:翅根鞘翅,翅尖膜翅翅尖膜翅 G G 鞘翅:前翅骨化鞘翅:前翅骨化9第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述(3 3)翅的连锁:)翅的连锁:蜻蜓、蝗虫等长翅类的前后翅膀都是单独工作的,蜻蜓、蝗虫等长翅类的前后翅膀都是单独工作的,当后翅变小但在飞行中仍然起作当后翅变小但在飞行中仍然起作用,则后翅通常以各种形式的连锁器与前翅挂在一起,行动起来成为一个整体,使用,则后翅通常以各种形式的连锁器与前翅挂在一起,行动起来成为一个整体,

    6、使飞行更为有效。飞行更为有效。不同昆虫的连锁器结构不同,或为钩状,或为数根鬃毛,或为卷褶状。不同昆虫的连锁器结构不同,或为钩状,或为数根鬃毛,或为卷褶状。设计仿生机械昆虫翅膀时,要知道前后翅膀的连锁情况。设计仿生机械昆虫翅膀时,要知道前后翅膀的连锁情况。(4 4)飞行距离与速度:)飞行距离与速度:有些昆虫,如蝗虫,可飞行上千公里,飞行速度也很快。有些昆虫,如蝗虫,可飞行上千公里,飞行速度也很快。如,蜜蜂:如,蜜蜂:2.5-6m/s2.5-6m/s;蜻蜓:;蜻蜓:10-20m/s10-20m/s;蝴蝶:;蝴蝶:8m/s8m/s,蝗虫,蝗虫,3m/s3m/s10第八章仿动物飞行的机械及设计第一节第

    7、一节 飞行动物概述飞行动物概述(4 4)翅膀振动频率)翅膀振动频率 名称名称蝴蝶蝴蝶飞蛾飞蛾蜜蜂蜜蜂苍蝇苍蝇蚊子蚊子蜻蜓蜻蜓蝗虫蝗虫甲虫甲虫频率频率(次次/秒)秒)105-6300400300500-600101318801056 翅膀振动频率是设计昆虫翅膀煽动次数的重要依据,下面数据仅供参考。翅膀振动频率是设计昆虫翅膀煽动次数的重要依据,下面数据仅供参考。二、鸟类二、鸟类 1 1、鸟类的形态与结构、鸟类的形态与结构 鸟类身体呈流线型,布满羽毛,飞行阻力小;翅膀面积大。骨骼轻,胸肌发达。膝关节鸟类身体呈流线型,布满羽毛,飞行阻力小;翅膀面积大。骨骼轻,胸肌发达。膝关节向前弯曲,有力于起飞。向前

    8、弯曲,有力于起飞。11第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述二、鸟类二、鸟类 1 1、鸟类的形态与结构、鸟类的形态与结构 鸟类身体呈流线型,布满羽毛,飞行阻力小;翅膀面积大。骨骼轻,胸肌发达。膝关节鸟类身体呈流线型,布满羽毛,飞行阻力小;翅膀面积大。骨骼轻,胸肌发达。膝关节向前弯曲,有力于起飞。向前弯曲,有力于起飞。鸟类的骨骼中空,可储存空气,减轻飞行重量。鸟类的骨骼中空,可储存空气,减轻飞行重量。122 2、鸟类的翅膀、鸟类的翅膀 翅膀是轻巧的可变翼,是由前肢演化而来的。手掌骨上的羽毛称为初级飞羽,产生翅膀是轻巧的可变翼,是由前肢演化而来的。手掌骨上的羽毛称为初级

    9、飞羽,产生飞行推力;在小臂上生长的羽毛为次级飞羽,产生升力;腕部羽翼其控制作用;飞行推力;在小臂上生长的羽毛为次级飞羽,产生升力;腕部羽翼其控制作用;肱骨尺骨和桡骨翅膀长度的平方除以面积。称展弦比。展弦比大,飞行能力强。翅膀长度的平方除以面积。称展弦比。展弦比大,飞行能力强。掌骨肱骨尺骨和桡骨肩关节肘关节腕关节L第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述3 3、鸟类的飞行、鸟类的飞行 鸟类的飞行滑翔、翱翔和扑翼飞行鸟类的飞行滑翔、翱翔和扑翼飞行 (1 1)滑翔:翅膀不扇动,向下方滑行)滑翔:翅膀不扇动,向下方滑行(2 2)翱翔:翅膀不扇动,利用热气流或不同高度水平风锁产

    10、生的水平气流飞行。)翱翔:翅膀不扇动,利用热气流或不同高度水平风锁产生的水平气流飞行。(3 3)扑翼飞行:煽动双翅飞行的动作,是主要飞行方式,是飞行仿生的研究重点。)扑翼飞行:煽动双翅飞行的动作,是主要飞行方式,是飞行仿生的研究重点。滑翔飞行滑翔飞行 翱翔飞行翱翔飞行 扑翼飞行扑翼飞行 14第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述4 4、鸟类翅膀煽动频率、鸟类翅膀煽动频率 振翅频率与体型有关。英国鸟类学家振翅频率与体型有关。英国鸟类学家 C.J.Pennycuick C.J.Pennycuick 给出了振翅频率的公式给出了振翅频率的公式:其中其中m m 为鸟的质量为鸟

    11、的质量(kg)(kg)g g 为重力加速度为重力加速度b b 为翼展为翼展S S 为翼面积为翼面积 为空气密度为空气密度鸟类体重越大,翅膀煽动频率越低,一般情况下,翅膀煽动频率与飞行状况有关,鸟类体重越大,翅膀煽动频率越低,一般情况下,翅膀煽动频率与飞行状况有关,不是一个固定值,这里仅是最大值;煽动频率是设计仿生鸟类的重要依据。不是一个固定值,这里仅是最大值;煽动频率是设计仿生鸟类的重要依据。如:蜂鸟约为80/s;野鸭约为5/s,鸽子8/s15第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述四、其他飞行动物四、其他飞行动物除去鸟类、昆虫类动物,还有些动物可以飞翔或滑翔。除去鸟

    12、类、昆虫类动物,还有些动物可以飞翔或滑翔。1 1、蝙蝠:、蝙蝠:蝙蝠翅膀没有羽毛,飞行技术也很高超,在夜晚外出捕食飞翔是蝙蝠的一大特点。蝙蝠翅膀没有羽毛,飞行技术也很高超,在夜晚外出捕食飞翔是蝙蝠的一大特点。蝙蝠翅膀也是由上肢演化的,大臂、小臂以及手指骨支撑翅膀。蝙蝠翅膀也是由上肢演化的,大臂、小臂以及手指骨支撑翅膀。16第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述2 2、会飞的鼯鼠、会飞的鼯鼠 4 4、会飞的蜥蜴、会飞的蜥蜴 鼯鼠鼯鼠 相同点:腹部两侧有可伸展的膜,展开后可滑翔。相同点:腹部两侧有可伸展的膜,展开后可滑翔。3 3、会飞的鼯猴、会飞的鼯猴 鼯猴鼯猴 蜥蜴蜥

    13、蜴 5 5、会飞的鱼、会飞的鱼 17第八章仿动物飞行的机械及设计第二节第二节 飞行机理简介飞行机理简介第二节第二节 飞行机理简介飞行机理简介一、伯努利(一、伯努利(bernoullibernoulli)方程)方程根据能量守恒定律,伯努利提出了根据能量守恒定律,伯努利提出了“流体动能流体动能+重力势能重力势能+压力势能压力势能=常数的概念常数的概念”,建立了著名的伯努利方程。建立了著名的伯努利方程。-流体密度流体密度 v-v-流体某点速度流体某点速度 g-g-重力加速度重力加速度 h-h-流体某点高度流体某点高度 p-p-流体某点压强流体某点压强其最为著名的推论为:等高流动时,流速大,压力就小。

    14、18第八章仿动物飞行的机械及设计第二节第二节 飞行机理简介飞行机理简介伯努利方程的应用伯努利方程的应用图示鸟的翅膀,上方为流线型曲线,下方近似直线,气流通过时,上面流速快,图示鸟的翅膀,上方为流线型曲线,下方近似直线,气流通过时,上面流速快,则压力小,下面气流慢,则压力大;翅膀上下产生了压力差,使鸟类飞行时产生则压力小,下面气流慢,则压力大;翅膀上下产生了压力差,使鸟类飞行时产生举升力举升力 。翅膀翅膀气流通过面积气流通过面积S S1 1后,流经上方流通面积变小为后,流经上方流通面积变小为S S2 2。使流速增快。压力变小。使流速增快。压力变小。19第八章仿动物飞行的机械及设计第二节第二节 飞

    15、行机理简介飞行机理简介飞机机翼的上表面是流畅的曲面,下表面则是平面。这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了。就是依据伯努利方程的基本原理。图示鸟翼向下扇动翅膀时,由于惯性原理,上方空气不会立即向下运动,气压降低;图示鸟翼向下扇动翅膀时,由于惯性原理,上方空气不会立即向下运动,气压降低;下方空气不会立即向下运动,则下方空气压力增加,产生了举升力。下方空气不会立即向下运动,则下方空气压力增加,产生了举升力。二、举升原理二、举升原理由于翅膀上下方的压力差,使翅膀周围由于翅膀上下方的压力差,使翅膀周围产生气流差

    16、,也增加举升力。扇动次数产生气流差,也增加举升力。扇动次数越多、举升力越大。越多、举升力越大。20第八章仿动物飞行的机械及设计第二节第二节 飞行机理简介飞行机理简介当鸟类向斜下方扇动翅膀时,空气的法向反力可分解为向上的升力和水平分力,即当鸟类向斜下方扇动翅膀时,空气的法向反力可分解为向上的升力和水平分力,即向前飞行的动力向前飞行的动力当垂直扇动翅膀时,举升力与鸟类重力平衡时,可水平飞行或静止不动。向上或向当垂直扇动翅膀时,举升力与鸟类重力平衡时,可水平飞行或静止不动。向上或向下飞行,取决于举升力和重力的大小。下飞行,取决于举升力和重力的大小。三、前进飞行原理:三、前进飞行原理:21第八章仿动物

    17、飞行的机械及设计第二节第二节 飞行机理简介飞行机理简介当鸟类翅膀前倾时,前缘低,后缘高,扇动翅膀时,会产生水平驱动力,推动鸟类当鸟类翅膀前倾时,前缘低,后缘高,扇动翅膀时,会产生水平驱动力,推动鸟类向前飞行。向前飞行。当鸟类翅膀前倾时,前缘低,后缘高,扇动翅膀时,会产生水平驱动力,推动鸟类当鸟类翅膀前倾时,前缘低,后缘高,扇动翅膀时,会产生水平驱动力,推动鸟类向前飞行。向前飞行。翅膀与水平气流所夹的角度翅膀与水平气流所夹的角度,称为攻角或迎角,适当的攻角会提高举升力。,称为攻角或迎角,适当的攻角会提高举升力。第八章仿动物飞行的机械及设计第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计第三

    18、节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计一、昆虫飞行机理分析一、昆虫飞行机理分析以蜻蜓为例:六足生在胸节下方,两对翅膀生在胸节背板处,四肢翅膀独立扇动。以蜻蜓为例:六足生在胸节下方,两对翅膀生在胸节背板处,四肢翅膀独立扇动。有背板肌肉控制。有背板肌肉控制。蜻蜓翅膀为膜状弹性结构,不具备流线型形状。上下扑动翅膀不足以产生足够升力和蜻蜓翅膀为膜状弹性结构,不具备流线型形状。上下扑动翅膀不足以产生足够升力和前进推动力,翅膀必须能绕翅根轴线旋转,才能有效飞行。(与鸟飞行不同)前进推动力,翅膀必须能绕翅根轴线旋转,才能有效飞行。(与鸟飞行不同)23第八章仿动物飞行的机械及设计第三节第三节 昆虫

    19、的飞行与仿生设计昆虫的飞行与仿生设计二、昆虫翅膀机构及其自由度二、昆虫翅膀机构及其自由度蜻蜓的生物原型到生物模型的机构简图如下:蜻蜓的生物原型到生物模型的机构简图如下:(a)(b)(c)图图a a为为3 3自由度的球面副;图自由度的球面副;图b b为为3 3个单自由度的转动副,图个单自由度的转动副,图c c为二个转动副:为二个转动副:图图c c为应用型机构简图;为应用型机构简图;1 1个转动副负责扇动翅膀,一个负责扭动翅膀。个转动副负责扇动翅膀,一个负责扭动翅膀。24第八章仿动物飞行的机械及设计三、昆虫振翅频率的测定三、昆虫振翅频率的测定第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计昆

    20、虫飞行的振翅频率较高,很难计算,一般采用实验法测定振翅频率。当高速摄影的昆虫飞行的振翅频率较高,很难计算,一般采用实验法测定振翅频率。当高速摄影的频率接近翅膀振翅频率时,翅膀静止不动,此时,高速摄影频率即为振翅频率。频率接近翅膀振翅频率时,翅膀静止不动,此时,高速摄影频率即为振翅频率。粗略实验结果为:振翅频率与其质量的负四分之一次方成正比。粗略实验结果为:振翅频率与其质量的负四分之一次方成正比。25第八章仿动物飞行的机械及设计第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计四、昆虫翅膀的折叠四、昆虫翅膀的折叠有些昆虫在不飞行的时候,翅膀可以折叠起来,后方软翅折叠后,藏在前面收起的鞘翅有些

    21、昆虫在不飞行的时候,翅膀可以折叠起来,后方软翅折叠后,藏在前面收起的鞘翅里面,如蝗虫和一些甲虫等。里面,如蝗虫和一些甲虫等。昆虫后翅的折叠,一般不同时进行,抖动腹部肌肉,类似折叠扇子那样,把后翅收起昆虫后翅的折叠,一般不同时进行,抖动腹部肌肉,类似折叠扇子那样,把后翅收起,再收起的鞘翅覆盖前翅。,再收起的鞘翅覆盖前翅。昆虫后翅的折叠是非常复杂的动作,对设计折叠类产品很有借鉴作用。昆虫后翅的折叠是非常复杂的动作,对设计折叠类产品很有借鉴作用。26第八章仿动物飞行的机械及设计第二节第二节 飞行机理简介飞行机理简介从折叠翅膀的角度看,从折叠翅膀的角度看,3 3自由度翅膀更为有利于飞行。自由度翅膀更为

    22、有利于飞行。R R1 1用于扭翅,用于扭翅,R2R2用于收翅用于收翅 ,R R3 3用于扇翅或扑翼飞行。用于扇翅或扑翼飞行。图示昆虫鞘翅的扭翅扭摆用于产生推动力,后翅扑翼产生升力。图示昆虫鞘翅的扭翅扭摆用于产生推动力,后翅扑翼产生升力。可折叠翅膀机构类型很多,图示为简单的四边形机构。可折叠翅膀机构类型很多,图示为简单的四边形机构。27第八章仿动物飞行的机械及设计第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计五、仿生昆虫机器人腿部结构五、仿生昆虫机器人腿部结构昆虫机器人的地面运动属于爬行运动,其腿部机构可按照爬行动物的步行机构设计;昆虫机器人的地面运动属于爬行运动,其腿部机构可按照爬行动

    23、物的步行机构设计;但一般为六足爬行。典型爬行腿机构如下:但一般为六足爬行。典型爬行腿机构如下:R R1 1为迈步,为迈步,R R2 2为抬腿为抬腿作为结构图,右为机构简图作为结构图,右为机构简图28第八章仿动物飞行的机械及设计第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计六、仿生昆虫机器人六、仿生昆虫机器人仿生昆虫机器人大都为微型机器人,比较典型的有蜻蜓机器人、蝴蝶机器人、苍蝇机仿生昆虫机器人大都为微型机器人,比较典型的有蜻蜓机器人、蝴蝶机器人、苍蝇机器人、以及各类昆虫机器人,器人、以及各类昆虫机器人,29第八章仿动物飞行的机械及设计第一节第一节 飞行动物概述飞行动物概述仿生蜻蜓机器人

    24、仿生蜻蜓机器人30第八章仿动物飞行的机械及设计第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计仿生蜻蜓机器人仿生蜻蜓机器人1 1实现扭翅和扑翼两个翅膀动作是蜻蜓机器人实现扭翅和扑翼两个翅膀动作是蜻蜓机器人设计重点,同时对实现这俩个动作的传动机构设计重点,同时对实现这俩个动作的传动机构进行设计。参照图示机械装置。进行设计。参照图示机械装置。31第八章仿动物飞行的机械及设计第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计仿生蜻蜓机器人仿生蜻蜓机器人2 2该机器蜻蜓系统共采用该机器蜻蜓系统共采用9 9台伺服电动机,其中台伺服电动机,其中1 1台伺服电动机安装在主体架构底部,负台伺服电动机

    25、安装在主体架构底部,负责调节翅膀的振动频率(频率在责调节翅膀的振动频率(频率在1515到到2020赫兹之间)赫兹之间)4 4个翅膀关节均安装个翅膀关节均安装2 2台伺服电动机,台伺服电动机,独立控制翅膀的振幅,幅度在独立控制翅膀的振幅,幅度在 之间;每个翅根最大可旋转之间;每个翅根最大可旋转 ,用以控制攻,用以控制攻角。完成前进、后退或者侧向移动,可进行快速加速、减速、转弯和后退等动作。角。完成前进、后退或者侧向移动,可进行快速加速、减速、转弯和后退等动作。32第八章仿动物飞行的机械及设计第三节第三节 昆虫的飞行与仿生设计昆虫的飞行与仿生设计仿生蝴蝶机器人仿生蝴蝶机器人翼展长度为翼展长度为50

    26、50厘米,重量只有厘米,重量只有3232克。两台电动机独立地驱动两只翅膀,装有一个克。两台电动机独立地驱动两只翅膀,装有一个IMUIMU(惯性测量单元),用于检测物体在载体坐标系统独立三轴的加速度信号以及载体相(惯性测量单元),用于检测物体在载体坐标系统独立三轴的加速度信号以及载体相对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解算出物体的姿态,还有两个算出物体的姿态,还有两个9090毫安的聚合物电池。机器蝴蝶机翼本身使用的是碳纤维毫安的聚合物电池。机器蝴蝶机翼本身使用的是碳纤维骨架,并覆盖更薄

    27、的弹性电容膜。其每秒拍打骨架,并覆盖更薄的弹性电容膜。其每秒拍打1-21-2次翅膀,最高速度可达到次翅膀,最高速度可达到2.5m/s2.5m/s,图示为德国机器人公司图示为德国机器人公司FESTOFESTO研制的仿生机械蝴蝶。研制的仿生机械蝴蝶。第八章仿动物飞行的机械及设计第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计一、扑翼飞行与扑翼机一、扑翼飞行与扑翼机第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计扑翼飞行是指翅膀上下扑动,同时翅膀沿扭转轴扭转,使迎角迅速地改变,称这种飞扑翼飞行是指翅膀上下扑动,同时翅膀沿扭转轴扭转,使迎角迅速地改变,称这种飞行为扑翼飞行。在翅膀下拍至最低

    28、点时,翅膀快速地向外扭转,而在翅膀上抬至最高行为扑翼飞行。在翅膀下拍至最低点时,翅膀快速地向外扭转,而在翅膀上抬至最高点时,翅快速地向内扭转。点时,翅快速地向内扭转。第八章仿动物飞行的机械及设计第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计二、扑翼机构的设计与分析二、扑翼机构的设计与分析鸟的扑翼飞行和起飞与着陆是仿生鸟类机器人设计的两大难点。鸟的扑翼飞行和起飞与着陆是仿生鸟类机器人设计的两大难点。扑翼扑翼机构基本可分为两类,关节型仆翼机构和连杆型仆翼机构。机构基本可分为两类,关节型仆翼机构和连杆型仆翼机构。昆虫类翅膀经常采用关节型仆翼,昆虫类翅膀经常采用关节型仆翼,可采用可采用压电陶瓷

    29、驱动机构、压电陶瓷驱动机构、交变磁场驱动机构、静交变磁场驱动机构、静电致动胸腔式扑翼机构,压电晶体电致动胸腔式扑翼机构,压电晶体(PZT)(PZT)致动机构,人工肌肉驱动机构等。致动机构,人工肌肉驱动机构等。飞鸟类飞鸟类扑翼扑翼经常采用连杆型经常采用连杆型扑翼扑翼机构,采用伺服电机驱动。机构,采用伺服电机驱动。连杆机构型扑翼飞行机构主要涉及到机构选型设计与自由度的计算连杆机构型扑翼飞行机构主要涉及到机构选型设计与自由度的计算35第八章仿动物飞行的机械及设计1 1、扑翼机构自由度的计算、扑翼机构自由度的计算 第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计扑翼机构两个翅膀的上下扑动只有一个

    30、自由度扑翼机构两个翅膀的上下扑动只有一个自由度,图示为典型连杆机构型的仆翼机构图示为典型连杆机构型的仆翼机构。没有考虑绕翅根轴线的转动自由度,也就是说缺乏翅翼扭转形成的攻角,由于翅膀采没有考虑绕翅根轴线的转动自由度,也就是说缺乏翅翼扭转形成的攻角,由于翅膀采用流线型结构,也能满足前进要求。用流线型结构,也能满足前进要求。例例1 1:36第八章仿动物飞行的机械及设计例:扑翼机构自由度的计算例:扑翼机构自由度的计算 第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计机架37第八章仿动物飞行的机械及设计例例3 3:扑翼机构自由度的计算:扑翼机构自由度的计算 第四节第四节 鸟类的飞行与仿生设计鸟类

    31、的飞行与仿生设计38第八章仿动物飞行的机械及设计翅膀扑翼运动的驱动翅膀扑翼运动的驱动 第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计昆虫和鸟类的飞行依靠控制胸部肌肉弹性运动昆虫和鸟类的飞行依靠控制胸部肌肉弹性运动控制控制翅膀翅膀的扑翼运动的扑翼运动,。图示为昆虫,。图示为昆虫胸部结构,左翅膀胸肌收缩,翅肌放松,翅翼向上扑动,反之,则向下扑动。昆虫胸胸部结构,左翅膀胸肌收缩,翅肌放松,翅翼向上扑动,反之,则向下扑动。昆虫胸翅结构可用图示铰链四连杆机构代替,铰链四杆机构相当于骨骼和关节翅结构可用图示铰链四连杆机构代替,铰链四杆机构相当于骨骼和关节,弹簧相当于弹簧相当于胸部肌肉胸部肌肉,是系

    32、统中的柔性构件和储能元件。当扑翼飞行翅膀上拍时是系统中的柔性构件和储能元件。当扑翼飞行翅膀上拍时,弹簧拉伸弹簧拉伸,储存储存能量能量,下拍时下拍时,在回复力作用下恢复原长在回复力作用下恢复原长,释放能量。释放能量。39第八章仿动物飞行的机械及设计2 2、机构尺寸设计、机构尺寸设计 第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计经过大量飞行姿态测试,发现一般飞行状态下,翅膀的扇动角度保持在经过大量飞行姿态测试,发现一般飞行状态下,翅膀的扇动角度保持在 左右左右以图示铰链四杆机构为例,说明其尺寸设计以图示铰链四杆机构为例,说明其尺寸设计 已知:摆杆长度已知:摆杆长度BCBC 机架长度机架长

    33、度OCOC 翅膀上下摆角翅膀上下摆角 40第八章仿动物飞行的机械及设计设计过程如下:设计过程如下:第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计1 1)选择比例尺作三角形)选择比例尺作三角形 2)2)以以 C C为圆心,机架为圆心,机架OCOC为半径作圆,在该圆上任选一点为半径作圆,在该圆上任选一点O,O,画出通过画出通过OBOB1 1B B2 2三点的圆,连接三点的圆,连接 ,其中:,其中:A A为曲柄尺寸,为曲柄尺寸,b b连杆尺寸;连杆尺寸;3 3)验算最小传动角)验算最小传动角该机构通过反复修改给定尺寸,可有无数解。该机构通过反复修改给定尺寸,可有无数解。A A为曲柄尺寸,为曲柄尺寸,b b连杆尺寸;连杆尺寸;第八章仿动物飞行的机械及设计第四节第四节 鸟类的飞行与仿生设计鸟类的飞行与仿生设计3 3、运动分析、运动分析 得到机构尺寸后,还需进行运动分析,验算翅膀摆动速度与加速


    注意事项

    本文(仿生机械学-第2版-第八章-仿动物飞行的机械及设计.ppt)为本站会员主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 冰点文档网站版权所有

    经营许可证编号:鄂ICP备2022015515号-1

    收起
    展开