欢迎来到冰豆网! | 帮助中心 分享价值,成长自我!
冰豆网
全部分类
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • 党团工作>
  • ImageVerifierCode 换一换
    首页 冰豆网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    机械振动.docx

    • 资源ID:4363089       资源大小:576.49KB        全文页数:15页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    机械振动.docx

    1、机械振动 Fundamentals of Vibration Lecture 1 Ji Lin Section of Mechanical Design and Theory School of Mechanical Engineering Shandong University Vibration Problems 1. Vibrations are usually small, oscillatory motion about a static equilibrium position. 2. Most engineering structures vibrate. (Rotating m

    2、achinery)Practical Examples Effects 3. Becoming lighter, faster, quieter, and more flexible are often more prone to vibrations. 4. Engineers need to be equipped with the knowledge required to tackle vibration problems encountered in industryto understand, model, analysis, design and treat General Ai

    3、m To introduce students with little or no previous experience of mechanical vibrations, and with quite different backgrounds, to the basic concepts of vibrational behavior, to provide a general introduction to vibration modeling, analysis and control. Course Overview 1. Course Content 9 Sections 2.

    4、Resources 1) Lecture notes (including examples and problems, mainly written by Prof. Mace, ISVR, Univ. of Soton) 2) Mechanical Vibrations by S.S. Rao, Addison Wesley Publishing. (Core text) 3)机械振动基础 , 胡海岩, 航空工业出版社 (Secondary text) 3. Credit Value: 2 points 4. Formal Contact Hours: 32 5. Assessment A

    5、ssignments(80%) + Attendance(10%) + Others(10%) Introduction 1. Terminology Free/forced vibration; Damped/undamped system; Linear/non-linear system; Deterministic/random Vibration; Discrete/continuous system. 2. Basic Principles ( to find system equations) Newton Laws; Work-energy; Impulse momentum;

    6、 Lagranges equation 3. Basic Concepts Degree of freedom; Simple harmonic motion; Complex exponential notation (C.E.N); Frequency response function (FRF) Fundamentals For vibration to occur we need ? mass ? stiffness k ? The other vibration quantity is damping c System vibrates about its equilibrium

    7、position Ingredients of Vibration Mass store of kinetic energy Stiffness store of potential (strain) energy Damping: dissipates energy Force provide energy Vibro-acoustic Problems Interior Noise Effects of Vibration 1. Large displacements and stresses (esp. resonance) 2. Fatigue 3. Noise, sound 4. B

    8、reakage, wear, improper operation 5. Physical discomfort, physiological effects 6. Instabilities (flutter, galloping) Free Vibration no external forces act System vibrates at its natural frequency Fundamentals -damping Mechanical Systems ? Systems maybe linear or nonlinear ? Linear Systems (idealiza

    9、tion) 1 Output frequency = Input frequency 2 If the magnitude of the excitation is changed, the response will change by the same amount 3 Superposition applies (Non-linear systems are not considered in this course.) Mechanical Systems Linear system Mechanical Systems ? Linear system y = Ma + Mb = M(

    10、a + b) Mechanical Systems Nonlinear system Contain nonlinear springs and dampers; Do not follow the principle of superposition output comprises frequencies other than the input frequency output not proportional to input Newton Laws Force = mass acceleration Moment = rotation inertia angular accelera

    11、tion Work-energy = kinetic energy + potential strain ) energy Energy ( Work of external forces = change in energy Impulse-momentum theorem Impulse = change in momentum Lagranges equation Systematic method (see the last sec tion ) Degrees of Freedom (DOFs) Modelling Number of DOFs = number of indepen

    12、dent coordinates we use to describe the motion Coordinates may be displacements of some points, rotation, relative displacement, other (modal amplitudes). Number depends on 1) how complex the system is; 2) how we choose to model it; 3) modelling simplifications and assumptions; 4) what we want from

    13、the model. (FEA? SEA?) Harmonic motion 2 radians Solution can be written as any of xt() =A sin( t ) +B cos( t ) t +)xt() =C sin( (sinusoidal or t +) time harmonic)xt() =D cos( frequency :(rad /) f = (cycle / sec s ond )2 period :T (, )s time per cycle ( ): =A22amplitude magnitude CD +B mean value :

    14、x =0 21 2 Cmean square value : x =C . rms r m s value : x = 22 dxvelocity x dt 2dxacceleration x dt2 Complex Exponential Notation b x = Acos + iAsin x = A(cos+ isin )+ real + imaginary i phaseSo x = Ae Eulers Equation ie = cos isin magnitude 22 magnitude x = A= a + b phase = tan 1 (ba) Complex Expon

    15、ential Notation (C.E.N) Time harmonic quantity written as xt() = In the “real” world we see ReX(t) xiX=eit Time derivatives x 2 ei Xit differential equationalgebraic equation Make life easy but introduce complex numbers. it+( )xt()= Xemagnitude phase Deterministic vibration Force and response known

    16、+ predictable (e.g. rotating machinery, impulse, ect.) Random vibration Force and response unknown/unpredictable e.g. uneven road, wind, turbulence boundary layers (TBL) Discrete Systems finite number of rigid masses + massless stiffness elements Multi-degree-of-freedom (lumped parameter systems) (N

    17、 modes, N natural frequencies) x3x1 x2 x4 Continuous systems Systems having distributed mass and stiffness (Infinite number of degrees-of-freedom) e.g. beams, plates etc. Example -beam Frequency Response Functions (FRFs) Define the system in terms of response to sinusoidal inputs (e.g. harmonic forc

    18、e excitations). FRF: The ratio output/input of a system in steady-state when time harmonic. it e.g. force (input) f =Fe itdisplacement (output) x =Xe it ratio of (complex)Xe XFRF it= amplitude, does notFe F depend on time Complex, (usually) frequency dependent; magnitude phase H ()H () Harmonic Forc

    19、es We often deal with time harmonic behaviour. Main Reasons 1. often have harmonic forces, e.g. rotating machine; 2. often have periodic forces comprising harmonic components, e.g. Fourier series; 3. general forces transformed as a sum of harmonics by Fourier Transform. Harmonic Response Frequency R

    20、esponse Function (FRF) The ratio output/input of a system in steady-state when time harmonic. Note that V = iX; A = iV Frequency Response Functions (FRFs) Acceleration Force Accelerance = Apparent Mass = Force Acceleration Displacement Force Receptance = Dynamic Stiffness = Force Displacement In vibrations, FRFs depend on what we are interested in.


    注意事项

    本文(机械振动.docx)为本站会员主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 冰点文档网站版权所有

    经营许可证编号:鄂ICP备2022015515号-1

    收起
    展开