欢迎来到冰豆网! | 帮助中心 分享价值,成长自我!
冰豆网
全部分类
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • 党团工作>
  • ImageVerifierCode 换一换
    首页 冰豆网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    080 医学仪器的基本原理 2.docx

    • 资源ID:7247682       资源大小:52.17KB        全文页数:19页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    080 医学仪器的基本原理 2.docx

    1、080 医学仪器的基本原理 2第80章 医学仪器的基本原理第1节医学仪器的基本结构一、医用传感器件二、信号处理系统三、显示系统第2节医用传感器件一、医用电极二、医用传感器第3节信号处理系统一、信号放大原理二、脉冲信号的放大三、放大器的幅频特性四、干扰及其抑制第4节输出显示系统一、数字式显示二、荧屏显示三、记录仪器第80章医学仪器的基本原理一切疾病的诊断均以正确获得人体信息为基础,实现这种生物信息检测的手段之一就是各种各样的临床医学仪器。现代的医学仪器大都可以把病人各种生理信息变成能观察到的形式,已成为临床诊断、监护的重要工具。在本章中将介绍它们的基本结构和原理。第1节医学仪器的基本结构图80-

    2、1一般医学仪器主要由传感器件、信号处理系统与显示系统组成。图80-1就是这类测量系统的示意图。传感器件从生物体上获得电信号传给信号处理系统。信号处理系统把信号进行放大、处理和分析。经过处理后的信号由显示系统显示为图象、数字或记录。一、医用传感器件医用传感器件是提取和捕捉生物体内各种信息并将其转换为电信号的装置,它是医学测量系统的重要组成部分。临床医学常需要测量的一些量列于表80-1。表801医学上需要测量的一些量类别医学上需要测量的一些量时间位移力压力振动(加速度)速度流量温度放射线化学成分生物电呼吸时间、眼球运动间隔时间、眨眼时间、脉搏时间、反应时间、知觉时间血管直径的变化、皮肤的厚度、皮下

    3、脂肪厚度、肿瘤的位置、结石的位置、心脏的位移心肌力、肌肉力、骨骼负载力血压、心内压、脑腔内压、胸腔压力、脊髓压、骨内压、血管内压、眼球内压、肌肉内压、直肠压力声音、呼吸音、心音、血管音、柯氏音、振颤血流速度、出血速度、排尿速度、发汗速度呼吸气体流量、血流量、出血量、尿流量口腔温度、皮肤温度、血液温度、脏器温度、呼吸温度、直肠温度、心内温度、胃内温度同位素剂量、X射线剂量O2、CO2、N2、CO、H2O、NH3、He、O3、Na、K、生化检查心电、脑电、骨电、肌电从上表可以看出这些被测量可归纳为两类:一类是生物电,另一类是非电物理量和化学量。测量生物电及化学量的传感器件是电极,它的作用是把生物体

    4、内介质中的离子电流转换成电子电路中的电子流。用于非电物理量测量的传感器件称为传感器,作用是把被测量转换为相应的电量,又称为换能器。传感器件的作用类似于人获得信息的五官,其性能好坏直接影响仪器的整体性能。二、信号处理系统一个传感器件输出的电信号一般比较微弱,不足以推动显示装置,它须有一个放大处理过程。信号处理系统的作用就是对传感器件输送来的信号进行放大、识别(滤波)、变换、运算等各种处理和分析。仪器性能的优劣,功能的多少主要决定于如稳定性、可靠性、重复性;精度的高低等。信号处理系统是一台医学仪器的核心,现代计算机技术在信号处理中的应用,更推动医学仪器向着自动化、智能化方向发展。三、显示系统被测量

    5、的生物信息经过放大处理,最后还要用显示系统定量地表示出来,成为人们能观察和测量的形式。信号显示有数字式显示和荧屏式显示。数字式显示器件是数码管,它可以将信号以数字形式显示出来。荧屏式显示目前普遍使用的是以示波管、显像管为代表的荧光屏显示器。为了得到信号随时间变化的永久性记录,则利用描记仪器。常用的描记仪器有描笔偏转式记录器,自动平衡记录器和磁记录装置。第2节医用传感器件传感器件包括电极和传感器。电极的用途是从生物体中直接取出电信号;传感器的作用则是把非电生理量,如温度、压力、血流量等转换为相应的电信号。下面分别介绍这两类传感器件。一、医用电极应用电极在生物体上获取电信号时,被测对象的特点不同,

    6、采用的电极结构也不一样。在探测单个细胞或组织深部的电位时,采用微电极;测量组织局部区域的电活动时,采用针电极;测量生物体表的电位时,可采用体表电极。(一)微电极图 80-21、金属微电极金属微电极可用不锈铜丝,铂铱合金丝或碳化钨丝等制成。把金属丝剪成适用的长度,用电解方法把一端腐蚀成极细的尖端,其余部分用绝缘漆涂上一层薄膜,另一端接上导线,然后固定在塑料手柄上如图80-2。这种电极阻抗较低,但由于电极的极化作用,电极特性不够稳定。为此应设法在金属表面镀上一层铂黑,使具有较大的有效表面,减小电流密度,降低噪声电平。图 80-3图80-3所示的电极是为了防止电极插入组织时碰到障碍物发生损坏的装置。

    7、这种电极把电极丝固定在支承杆的弹簧上,当电极向组织深部推进时,如遇到不正常的阻力会把弹簧压弯,所以,只要注意弹簧状况就不会损坏电极。图 80-42、玻璃微电极玻璃微电极是用玻璃毛细管拉制成颈缩形后,折断成为吸管状,在管腔内填充金属或电解液的电极(如图80-4)。最常用的玻璃微电极是在玻璃微吸管内填充电解液,其尖端与生物体组织液之间形成液体接界。在接界两面由于离子迁移率和浓度的不同会产生电位差。所以,选择适当填充微电极的电解液是极其重要的。例如,在NaCl溶液中Cl比Na+扩散快,因而产生电位差,当两种NaCl溶液的浓度比为1:10时,可产生3mV以上的电位差。对KCl溶液来说,因为K+与Cl的

    8、迁移率相近,故在浓度比为1:10的情况下,只产生0.4mV的电位差。因此通常要用浓度较大的3mmol/L KCl溶液作为玻璃电极的填充物。图 80-53、半导体微电极由于集成电路技术可以精密地控制尺寸,制造的重复性也好。因此,已采用集成电路的生产技术制作微电极。其基本结构如图4805所示。它是先在硅基片上生长一层SiO2,然后用照相浸蚀法沉积上窄的金带,再在上面蒸镀SiO2绝缘膜,最后把SiO2从金带的最顶端蚀刻掉,露出电极的接触表面。 (二)针电极图 80-6图80-6所示为几种常用针电极。(1)图所示为基本针电极,其结构是,电极端有一个尖锐的针尖,针身涂一层绝缘漆,针尖裸露,另一端焊接一根

    9、导线。这种电极通常用来测量肌电图。(2)图所示为同铀针电极。在针管中心穿一根绝缘金属细丝,针管内充填满绝缘材料(如环氧树脂),再用锉刀锉针的顶部,以使中心金属丝露出作为触点,细丝另端接同轴电缆的芯线,针身接到同轴电缆的屏蔽线上。这种电极具有屏蔽作用,亦称之为屏蔽针电极。当对正在进行外科手术的病人作心电图监视时,常常用它插入病人四肢皮下。(3)图为双针电极。它是在一个针管内放入两根相互绝缘的金属丝而构成的。其制作方法与同轴针电极类似。(三)体表电极体表电极结构如图80-7所示,它由一金属片及塑料罩组成(或仅用一金属片),在金属片和皮肤之间涂有电解糊,如氯化钠甘油混合物。常用于心电图 80-7图测

    10、量。二、医用传感器传感器又称换能器,它的作用是把生物体内各种非电生理量转换为相应的电信号。由于被测量的生理参数不同,因而有各种不同的专用传感器。近几年来传感器发展很快,种类繁多,分类方法亦各异。但如从是否需要外加驱动电源作为能源,则简单地分为有源型传感器和无源型传感器两类,现择其常用者介绍如下。(一)有源型传感器有源型传感器又称直接型传感器,它可以把生物体的非电生理信号直接转换为电压信号输出,也就是输出信号的能量主要来源于输入信号本身,不需要外加驱动电源作为能源。常用的有光电式传感器、热电式传感器、压电式传感器、电磁感应式传感器等。1、光电式传感器把光能直接变换为电压(或电流)信号的装置(或器

    11、件)称为光电式传感器。例如光电池、光电管、光电倍增管等,这里仅介绍光电池。光电池的结构如图80-8所示。光电池的本质是一个PN结,通常是在一块P型硅片上利用热扩散方法生长一层极薄的N型扩散层,形成一个PN结(PN结阻挡层的内电场方向由N指向P),在硅片的上下两面制作一对电极,就构成一个硅光电池单体。当光照射到光电池上时,其中一部分被光电池吸收,使半导体中的电子空穴对随着光强相应增加,致使N区少数载流子空穴显著增多,在内电场作用下,N区少数载流子空穴可跃过阻挡层到P区,而N区的电子在内电场作用下不能越过阻挡层。至于P区少数载流子电子的漂移方向,则与上述过程相反。结果使P区显正电极性,N区显负电极

    12、性,在PN结两侧产生的电动势称光生电动势,当连成闭合电路时就产生光生电流(80-9)。光生电流的大小与被侧光的照度成正比。在光电变换中,就是利用它的图 80-8图 80- 9这种特性。图 80-10光电池的种类很多,常用的有硅光电池和硒光电池两种,例如在光电容积脉搏计中常使用的就是硅光电池如图80-10。由于生物体组织对波长大于600nm的红光和近红外线吸收较少,血液却极易吸收这种光线,特别是对波长700800nm范围的光线,氧合血红蛋白和还原血红蛋白都能大量地吸收。利用灯光(红光)照射手指尖部,因指尖血管中血液的容积变化,体现出心脏搏动情况,当血液充盈时,容积变大,红光透过的少,反之则透过的

    13、多。利用光电池把透过指尖的光强变化变换为相应的电压信号,经过放大器放大后记录下来,其波形图就是光电容积脉搏图。2、热电式传感器热电偶是一种典型的热电式传感器。其构成原理如图8011所示,在康铜丝的两端分别用铜导线作电极,就组成了一个热电偶。当两种金属丝的两个接头处(1、2)有温差时,在其两极就能产生温差电动势。接成闭合电路则形成电流。温差电动势与两接触点处的温度T1与T2的关系近似为E(T1T2)(801)式中,为热电偶常数,由两种金属材料特性决定。实验证明,(801)式在温差(T1T2)不太大的情况下才近似成立,例如在T1T2050的测量范围内,可以认为温差电动势与温差成正比。如果定T1为标

    14、准温度(例如取0),在测出温差电动势E值后,由(801)式就可算出待测温度T2的值。图 80-11热电偶在生物医学研究中的应用较多,由于制造简单,长期稳定性好,可做得很小,便于插到导管内或注射针头中送入体内,测量某些部位的温度。也便于测量口腔内与内体表的温度差。特别是用它测量红外线辐射具有独特的优点,因为它能较好地排除周围温度对测量的影响,故测量精度较高。图 80-123、压电式传感器用压电材料制成的传感器称为压电式传感器。用作压电传感器的压电材料,通常有石英晶体、锆钛酸铅陶瓷、钛酸钡陶瓷、硫酸锂晶体等。因为这些晶体在受到机械压缩或拉伸发生形迹时,受力的两表面上将产生异种电荷,形成电位差,这种

    15、效应称为压电效应,如图80-12。压电效应是由于材料的电荷不对称分布产生的,当受到机械力作用时,由于晶体空间点阵变形使内部电荷发生相对位移,导致晶体的表面电荷发生变化形成电位差。压电效应是可逆的,如在压电材料两表面间加一定的电压,会使晶体产生伸长和缩短的形变,这种效应称为电致伸缩效应或逆压电效应。人工合成陶瓷材料具有很多优点,它可以制成任意形状、压电系数大、机械性能稳定的压电材料。在生理学上适合于在等长条件下研究各种刺激产生的力。压电材料表面产生的电荷变化量Q与受力的变化量F存在线性关系,即QDF(802)式中,D是材料常数,它表示材料的电荷灵敏度。如果把压电材料两个相对表面的极板看成是平行板

    16、电容器,则两极板间的输出电压变化量U与施加的变力F之间的关系可以表示为 (803)式中,S为极板面积,d为极板间的距离,为压电材料的介电系数。可见,对于一定大小的压电材料和电极,因为D、S、d、各量都是常数,所以两极间的电压变化量U 与所施外力的变化量F 成线性关系。但必须指出,这种线性关系只是在一定的频率范围内成立。压电式传感器,在医学上广泛用于测量血压、眼压、心内压、颅内压、心音和超声诊断等方面,具有频率响应好、方向性强等特点,并且可以抑制体内外的噪声。例如,超声诊断仪使用的压电式传感器(又称超声探头),一方面利用压电材料的逆压电效应,把高频电振荡信号变换为高频机械振动(超声波),另一方面

    17、利用压电效应还可以把高频机械振动(超声波)变换为电压信号,即用于发射和接收超声信号,是超声诊断仪的重要组成方面。(二)无源型传感器无源型传感器为间接型传感器。这种传感器可以把生物体上的被测非电量变换为电阻、电容、电感等电学量。这些电学量的变化可用驱动电源(或称辅助电源)经适当电路变换为电压(或电流)信号。所以,这种传感器最后输出的电压信号的能量,不是取自被测的生物体电量,而是由变换系统中的驱动电源提供的。这类传感器分为电阻式、电容式、电感式等多种。下面介绍几种常用的这类传感器件的工作原理。1、电阻式传感器(1)热敏电阻:热敏电阻是一种对热敏感的半导体材料。因为半导体中载流子的数目随温度上升而增

    18、加,所以它的阻值是随温度升高而下降的。其阻值RT和温度T的关系可以表示成 (804)式中T0为参考温度(如取室温298K,即25),T为待测温度,R0为T0的电阻值,是由半导体材料性质决定的温度常数,其值一般在20001500K之间。由(804)式可知,热敏电阻值随温度变化是指数曲线关系。如果测温范围较大,可采用补偿电路,使其接近线性关系。(2)光敏电阻:光敏电阻是利用某些半导体材料遇到光以后导电性提高,电阻值减小的特性制成的元件。例如硫化镉(CdS)、硒化镉(CdSe)在可见光和近红外区,硫化铅(PbS)、锑化铟(InSb)在远红外区都具有上述特性。由于硫化镉和硒化镉在可见光和近红外区范围内

    19、灵敏度较高,并且电阻值随照射光强的变化近似呈线性关系。所以,在医学测量中应用较多。如光电容积脉搏计、血氧仪及染料稀释法等测量中多用它作为传感器。(3)应变片:又称压敏电阻,由弹性元件和应变片组成。常用的有金属丝应变片、金属膜应变片和半导体应变片等,如图80-13所示。它们分别是由弯成栅状的金属丝、腐蚀的金属膜和半导体材料粘贴在衬底上制成的。其工作原理是当弹性元件在压力或位移作用下变形时,粘贴于弹性元件上的应变片产生应变而使其电阻值发生变化,把应变片接成电桥电路,转变成电压变化就可知待测量大小。以金属丝应变片为例,其电阻相对变化量如用R/R表示,长度相对变化量用L/L表示,其比值叫做应变片的灵敏

    20、度系数,用G表示,则 (805)可以证明 (806)上式中是电阻率,/常称为应变片的压阻效应,称材料的泊松系数。由此可知,应变片的灵敏度是由其组成材料的泊松系数和电阻率相对变化量与相对伸长量之比决定的。它是比较应变片性能好坏的重要指标,由于不同材料的泊松系数和L/L不同,所以灵敏度系数G也不同。表802为几种应变材料的灵敏度系数和电阻温度系数。材料的泊松系数都小于0.5,金属的压阻效应较小,所以应变灵敏度较低。半导体应变片的压阻效应较大,它的应变灵敏度约为金属的5070倍,但其温度系数很高,测量时必须采取温度补偿措施。表802应变材料的特性材料成分 灵敏度系数 温度系数1105康铜等弹性材料卡

    21、玛丝镍锰铜合金479号合金镍镍铬合金硅硅锗锗Ni45,Cu55 2.1 2Ni36,Cr8,Fes2(Mn,Si,Mo)4 3.523.6 17Ni74,Cr20,Fe3,cu3 2.1 2Cu84,Mn12,Ni4 0.30.47 2Pto2,W8 3.64.4 24Ni100 1220 670Ni80,Cr20 2.12.63 10P型 100170 70700N型 100140 70700P型 102N型 150图 80-13按结构区分,应变片有粘贴式与非粘贴式两种。图80-13所示就是粘贴式应变片,为提高灵敏度和抵消温度影响,应变片常常成对使用并组成桥式电路,由于它们受环境温度影响相同

    22、,使温度的作用在电路中互相抵消。测量时把两个应变片贴在待测部位对侧上,如外层伸长,它的电阻值增加R,而内层缩短,它的电阻值减小R,因此可使输出电压提高1倍。非粘贴式应变片是用细卡玛丝或铂钨丝绕在一个固定支承架与一个活动支承架之间制成。如图80-14所示,有4组相同的金属丝绕在固定支承架与活动支架之间,活动支承架与压力传感膜相连。当压力作用于膜片使活动架向右移动时,B和C被拉长,其电阻增加。A和D缩短,其电阻减少。将4根应变丝组成电桥电路,即可得到与压力成比例的输出电压信号。这种应变片测量精度高,性能稳定,医学上测压多采用这种结构,常用于血压、心内压、颅内压等的测量。图 80-15图 80-14

    23、2、线性差动变压器式传感器这种传感器的结构如图80-15所示,它由一个初级线圈P和两个对称放置但是串联反接的相同次级线圈S1和S2组成。可动铁芯用来改变初级和次级之间的耦合。在初级线圈上加一定的交流电压后,在两个次级线圈S1、S2上分别产生感应电压E1、E2,其值与铁芯位置有关。当铁芯在中间位置时,初级与次级线圈的耦合完全相同,则感应电压E1E2,由于两次级线圈串联反接,E1和E2的相位相反,故次级线圈总的输出电压UE1E20。当由于被测量的作用,使铁芯离开中间位置时,因为改变了互感量的对称性,则E1与E2不相等,这时次级产生的输出电压UE1E2,并且输出电压的大小与铁芯的位移成正比。这种传感

    24、器灵敏度较高,如果初级线圈上加1伏的电源电压,铁芯有1m的位移时,次级线圈获得0.21mV的输出电压。广泛用于微小位移、力和压强的测量,例如用于测量膀胱内压、血压和眼内压等。3、电容式压力传感器两个金属极板间的电容量C为 (807)其中,S为两极板间的相对有效面积,d为两极板间的距离,为两极板间介质的介电常数。由式(807)可知,当、S、d三个参数中任何一个发生变化,都会引起电容量C发生变化。如果保持其中的两个参数不变,而仅改变其中的一个参数,而且使该参数与被测量之间存在某种一一对应的函数关系,那么被测量的变化就可以直接由电容量C的变化反映出来。图 80-16电容式压力传感器如图80-16所示

    25、,这种传感器里面有一个受压薄膜,旁边放置一个绝缘良好的固定电极,构成一个电容器。当薄膜两面出现压强差时,薄膜产生移动,改变了与电容固定电极间距离,从而使电容量变化。电容器控制间歇振荡器充放电时间常数RC或LC振荡器的振荡频率,由C的变化转换成相应的频率变化,然后通过频率、电压转换电路转换为随压差而变化的电压信号。利用这种传感器可测量颅骨中的颅压,也可用来测定流动气体的压强,然后由柏努利方程求出气体的流速。(三)光纤多普勒流速传感器根据光波的多普勒效应,当频率为f的光以入射角照射到运动的物体时,从物体上散射回来的频率将发生f的改变 式中v为物体运动速度,在血流测量中,可视为红血球运动速度,即血流

    26、速度。为媒质中光波长。光纤多普勒血流速度计的结构如图80-17所示。光纤通过注射针插入血管内,激光器发出频率为f的线性偏振光通过偏振棱镜传输至皮肤表面。一部分在皮肤表面反射回原端,一部分射入血液被红血球散射后,再经光纤传输至原端。偏振棱镜只将这两束光波中的特定偏振成分反射至光电元件。由于散射光频率改变f ,故与反射光在光电元件受光面产生干涉。用光电二极管测出它们的频率变化f ,即可求得血流速度。由于信号光与反射光在同一光路传输,偏振面基本一致,光电检测效率高。这种测量系统是利用了单膜光纤传输特定偏振面的功能,属功能型(functional fiber,简称FF型)传感器,若采用不受外界扰动影响

    27、的偏振稳定光纤,则精度更高。图80-18表示用这种光纤探头测得的冠状小动脉、小静脉的血流速度波形。图 80-17图 80-18这种流速计的优点是传感部分不带电源,不受电磁场干扰,测量位置可自由移动选择,空间分辨高等,在临床上已获广泛使用。(四)传感器的性能指标为了说明和比较传感器的性能,一般采用下列指标:(1)灵敏度:灵敏度就是输出电信号变化量与输入非电信号变化量的比值。灵敏度高时,能够从一定的非电量信号中得到较大的输出电信号,这样才能把生物体微弱的非电量信号变换为可被电子仪器测出的电信号。(2)响应速度:表示传感器的输出信号随输入被测量变化的快慢程度。响应速度快,表示传感器的输出信号能迅速跟

    28、随被测量的变化而变化;响应速度慢,表示输出信号不能及时跟随输入信号的变化而变化。响应速度常用达到被测量的0.63所用的时间来表示,叫做传感器的时间常数。(3)直线性:在测量范围内,输出和输入成正比,即保持线性关系。传感器的线性好,变换不会失真。(4)信噪比:传感器输出的待测信号大小与混入的噪声大小之比。当然此比值越大越好,这就要求传感器能尽量排除生物体内外的噪声,并且本身没有或只有很小的附加噪声。(5)稳定性:指反复测量同一量所得结果的一致程度。这要求传感器受环境条件变化的影响要小,在环境条件变化的情况下,输出信号仍保持比较稳定。(6)频率特性和阻抗:传感器的通频带要满足被测信号的频率范围,以

    29、减少幅值失真与相位失真。传感器的阻抗与其相接的放大器输入阻抗相匹配,否则,将影响变换后信号的正常输出。以上介绍了传感器性能的一些主要指标。在实际测量时,要根据测量对象的具体要求和特点,对各种性能指标作统一考虑,既要有所侧重,又要全面兼顾。第3节 信号处理系统信号处理系统是对传感系统输送来的信号进行放大、识别(滤波)、变换、运算等各种处理、分析的过程。本节仅就信号放大的基本原理和使用医学仪器的基本知识介绍如下。一、信号放大原理如图80-19所示,当在晶体三极管放射结加上正向电压,集电结加上反向电压时,就有发射极电流Ie、基极电流Ib和集电极电流Ic形成。由于Ic的大小受Ib的控制,Ib的微小变化

    30、可以成比例地引起Ic较大的变化,这种作用称为晶体三极管的电流放大作用。Ic变化与Ib变化的比值叫做晶体管的电流放大系数,即 图 80-19在图80-19中,Rc称负载电阻,Ui表示输入的信号电压,U0表示放大器输出电压,从图中可见U0EcIcRc因为Ec和Rc都是不变的量,故有 U0IcRL但 ,。因此上式可以写成 U0KuUi或 比例常数Ku叫做放大器的电压放大倍数。负号表示U0和Ui的变化是反相的,即b点的电势上升时,c点的电势下降。不考虑它们的位相关系时,上式可写成(808)即电压放大倍数等于输出信号电压与输入信号电压之比。A的值决定于晶体管的特性以及电路的设计。一般单管放大器Ku值约为

    31、100左右。如果这样的放大倍数还不能满足要求,还可以采用连续放大的方法,把输出信号再加放大,称为多级放大。一个包括多级放大的集成电路运算放大器的Ku值可以达到105以上。为了保证放大信号的质量以及满足不同使用目的的要求,实际放大器的电路往往是比较复杂的。不过在分析一个测量系统时,放大器本身如何具体工作对我们并不重要,重要的是弄清它对信号发生什么影响。一个放大器可以用一个具有某些特性的“黑箱”来代表。图48020表示一个电阻RE的传感器和放大器连接的两种方式:(1)直流耦合,即把传感器的输出信号直接与放大器的输入端连接。(2)交流耦合,传感器的输出信号通过电容器与放大器输入端相连。三角形代表放大器,它的顶点指向信号传输方向。Ri叫放大图 80-20器输入电阻(Ri输入电压Ui/输入电流Ii)。二、脉冲信号的放大图 80-21脉冲信号在医学测量中具有重


    注意事项

    本文(080 医学仪器的基本原理 2.docx)为本站会员主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 冰点文档网站版权所有

    经营许可证编号:鄂ICP备2022015515号-1

    收起
    展开