本科课程论文 我国煤炭工业的发展Word文档格式.docx
- 文档编号:18949398
- 上传时间:2023-01-02
- 格式:DOCX
- 页数:10
- 大小:210.67KB
本科课程论文 我国煤炭工业的发展Word文档格式.docx
《本科课程论文 我国煤炭工业的发展Word文档格式.docx》由会员分享,可在线阅读,更多相关《本科课程论文 我国煤炭工业的发展Word文档格式.docx(10页珍藏版)》请在冰豆网上搜索。
目录
一、我国的煤炭技术进步的长足发展4
(一)煤田地质勘探精度、快速建井上巷道掘进技术水平不断提高4
(二)煤矿综采成套装备水平得到提升,高产高效矿井建设取得巨大成就4
(三)安全生产的技术水平得到提高5
1.瓦斯的防治5
2.煤尘爆炸的防治5
二、煤炭工业技术进步面临的挑战6
三、“十二五”煤炭工业科技进步的发展目标7
四、“十二五”煤炭科技重点发展的重点领域7
(一)资源勘探及矿井建设领域7
(二)煤炭资源开采领域7
(三)煤矿安全生产方面7
1.煤炭安全生产现状7
2.国家煤炭安全生产办法8
(四)煤炭洁净利用和煤化工领域9
1.洁净煤技术9
2.煤焦化10
3.煤气化10
4.煤液化11
5.新型煤化工和新型煤化工技术开发13
参考文献15
前言
通过这一学期对现代工业系统中煤炭工业的学习和十月下旬到同煤云冈的亲身参观实习让我对我国的煤炭工业发展有了更加深入的了解,加上自己之前对煤炭工业的认识和通过查询煤炭工业资料,对我国煤炭工业的发展加以论述。
一、我国的煤炭技术进步的长足发展
(一)煤田地质勘探精度、快速建井上巷道掘进技术水平不断提高
以高分辨率三维地震勘探技术为核心的精细物探技术,结合其他的高精度、数字勘探技术的应用推广,极大地提高了井田的精细化勘探程度,为大型矿井设计提供了资源保障。
深井、厚冲积层条件下的矿井建设水平不断提高,采用钻井法、冻结法两种凿井工艺,基本解决了近600米厚松散冲积层的矿井建设难题,达到国际领先水平;
千米深凿井技术和工艺取得了突破性进展,立井井筒施工速度达到每月230米以上,创造了世界纪录。
煤巷、半煤岩巷掘进技术装备得到长足发展,研制成功了一系列高可靠性的半煤岩巷掘进机,配合巷道锚杆锚索支护新技术,显著地提高了巷道掘进施工的机械化水平,为我国现代化矿井建设提供了有力的技术保障。
(二)煤矿综采成套装备水平得到提升,高产高效矿井建设取得巨大成就
近几年来,自主研究开发了具有国际先进水平的大功率电牵引采煤机,具有电液控制功能的大采高强力液压支架,大运力重型刮板运输机及转载机,大倾角、大运力胶带输送机,可为开采煤层厚度5米左右、配套能力每小时2500吨、年生产能力600万吨的综采工作面提供成套装备及开采工艺,在比较复杂的开采条件下实现高产高效。
到2005年底,全国符合高产高效矿井建设条件的煤矿共有197个,产煤6.35亿吨,人均工效达到17.5吨,百万吨死亡率为0.045,主要技术经济指标接近或达到了世界先进水平。
(三)安全生产的技术水平得到提高
1.瓦斯的防治
煤矿瓦斯事故发生的原因是多方面的,影响因素众多。
有的原因具有潜在性、突发性,而事故本身具有破坏性和灾难性。
但煤矿瓦斯灾害事故的发生也有其一般的规律,只有掌握了灾害发生、发展的规律性,才能有效地避免事故的发生和发展。
煤矿灾害事故发生的原因,除了与矿井本身的自然条件、开采工艺、管理水平、安全意识及员工素质等有很大关系外,技术装备水平仍然是极为关键的因素。
我国所有煤矿均为瓦斯矿井。
随着开采深度的不断增加,机械化程度的不断提高,开采强度的不断增强,瓦斯涌出量还会进一步增大,瓦斯灾害的治理越来越成为煤矿灾害防治的重点。
我国在瓦斯防治方面提出:
加强煤矿瓦斯的基础理论研究,掌握瓦斯灾害事故发生的机理及其演化过程,在瓦斯防灾、抗灾和救灾的理论和技术难题上取得巨大突破,为煤矿瓦斯治理的全面好转提供理论和技术基础;
建立和健全完善的煤矿安全科技创新体系和科技服务体系,研究矿井瓦斯事故发生、救灾的有效技术,并制定科技成果的推广和转化机制;
建立和健全完善的煤矿安全监察技术支撑体系,借鉴外国的经验,在各省内部实现监察联网。
监察人员每次执法都现场无线上网,并存入省局服务器,便于全省统一调度和指挥监察。
2.煤尘爆炸的防治
我国多数煤矿所产生的粉尘具有爆炸性。
据统计,我国国有煤矿中90%的矿井的煤尘具有爆炸的危险。
对单一煤尘来说,其爆炸下限浓度为30mg/m3~50mg/m3,上限浓度为1000mg/m3~2000mg/m3时,爆炸力最强的浓度为300g/m3~500g/m3时。
煤尘爆炸的引爆温度一般为650℃~990℃。
粒度越小,单位煤尘质量的表面积越大,越容易产生爆炸。
发生爆炸时,粒度小于1mm的煤尘都能参与爆炸,但爆炸的主体是小于75μm的煤尘。
井下空气中如果有沼气和煤尘同时存在,能增加沼气、煤尘爆炸的危险性,并能相互降低各自爆炸的下限浓度。
当存在有沼气,且浓度达到3.5%时,空气中的煤尘浓度只要达到6.lg/m3时,就可能发生爆炸。
正常空气中的氧含量为20.9%,在井下作业环境空气中由于其他气体的混合,氧含量降低,则影响煤尘的着火温度,使着火温度升高,当氧含量低于17%时,煤尘就不会发生爆炸。
煤尘爆炸可放出大量热能,爆炸火焰温度可高达2000℃甚至更高,产生破坏性很强的高温。
在发生爆炸的地点,可能连续发生第二次爆炸,造成更大的灾害。
煤尘爆炸时,爆源l0m~30m内的破坏程度较轻,即爆源附近的破坏力较弱,离爆源较远处爆炸压力较高,破坏力强。
煤尘爆炸传播时,冲击波传播的速度大于火焰传播速度。
这样,巷道中沉积的煤尘先被冲击波扬起,随即被到达的火焰点燃发生爆炸,且不断向远处蔓延。
煤尘爆炸气体中含有大量CO和CO2爆炸区空气中CO的含量可高达8%,这是造成人员死亡的主要原因。
瓦斯煤尘爆炸的控制技术分为预防爆炸发生技术和抑制爆炸传播技术两个方面。
预防爆炸发生的方法主要是采取措施控制瓦斯积聚、煤尘的产生或飞扬以及火源的产生;
抑制瓦斯煤尘爆炸传播的方法主要是采取措施将已发生的瓦斯煤尘爆炸限制在一定区域,尽量控制灾害损失。
其措施主要是设置被动式隔爆装置和自动抑爆装置。
被动式隔爆装置是借助于爆炸冲击波的作用来喷洒消焰剂,而本身无喷洒动力源:
自动抑爆装置是利用传感器探测爆炸信号,触发自带的动力源喷洒消焰剂,形成抑制带。
被动式隔爆装置最早采用撒布岩粉和设置普通岩粉棚,虽然防止爆炸传播效果较好,但岩粉暴露在潮湿空气中,极易受潮而失去消焰剂功效,且频繁更换岩粉的工作量较大,因此我国煤矿现在几乎已不采用这两种方法。
但国外仍有些国家还普遍使用。
在20世纪90年代,煤科总院重庆分院开发的隔爆水槽(脆性)和隔爆水袋,以水作为消焰剂,方便了煤矿安装和使用,在全国得到了广泛推广应用,其中隔爆水袋的使用最为普遍,收到了很好的效果。
二、煤炭工业技术进步面临的挑战
由于我国煤层赋存条件复杂,井工开采比例大,中小型矿井数量多,导致了煤炭开采技术水平的多层次性,煤矿整体技术水平和安全生产水平还相对落后,煤炭资源洁净开发利用研究起步晚,技术不够成熟,大量煤炭直接燃烧而造成的环境污染还相当严重。
要解决煤炭工业健康发展的一系列重大问题,必须依靠技术进步与创新,全面提升煤炭工业的整体技术水平。
三、“十二五”煤炭工业科技进步的发展目标
煤炭工业要全面落实《若干意见》精神,走资源利用率高、安全有保障、经济效益好、环境污染少的新型工业化道路。
我国煤炭工业科技进步发展目标,要紧紧围绕大型煤炭基地建设、煤矿安全高效生产技术、煤炭综合加工利用技术等领域,开展综合攻关,重点突破,强化创新,引领发展,实现绿色开采,发展循环经济,使我国煤炭资源开发利用的整体技术水平有所突破,“十二五”末使科技对全行业经济发展的贡献率达到45%以上。
四、“十二五”煤炭科技重点发展的重点领域
(一)资源勘探及矿井建设领域
在资源勘探及矿井建设领域,要重点研究开发高精度、高分辨率和高可靠性的地质勘探技术装备,提高地质结构的勘探精度,为我国大型煤炭基地建设和复杂地层条件下的资源开采提供可靠的地质保障。
同时开展中东部地区深部煤层资源赋存规律和探测与开采技术、深部高效找矿和快速勘探技术的研究,解决600米深厚冲积层下凿井技术理论和技术难题,为我国深部煤炭资源高效、安全开采提供理论依据和技术手段。
(二)煤炭资源开采领域
在煤炭资源开采领域,利用现代加工、智能控制技术和工况监控技术,研究开发大功率、高可靠性的采煤装备,使井工开采工作面生产能力达到每年1000万吨以上,大型露天矿生产能力达到每年2000万吨以上,同时使薄煤层开采技术和短臂开采装备水平有突破性提高,使采煤装备更适合于各类复杂煤层的开采条件,全面提升我国采煤技术的机械化、自动化水平。
(三)煤矿安全生产方面
1.煤炭安全生产现状
目前我国煤矿安全工作中存在的问题我国经过几十年的建设,煤炭行业都相继建立了安全方面的专业技术研究机构,建立和完善了试验检测手段,制定了一系列相关技术标准,为煤矿安全生产、科学管理提供了有力的技术支撑。
近年来,国家也进一步完善了提高煤矿安全生产水准的一些法律、法规,迫使煤矿企业提高安全意识,加强安全装备。
但由于受诸多方面的因素制约与限制,全国煤矿每年事故死亡人数一直徘徊在6000~7000人左右,煤矿安全生产形势依然严峻。
2.国家煤炭安全生产办法
对于我国目前煤炭生产中还存在的重大问题,国家出台了相应的安全生产办法,我国的煤炭企业必须遵照国家安排实行相应的安全生产办法,按规章制度进行安全作业。
1)加强调度值班指挥和干部下井带班的管理工作煤矿企业每天要安排一名副矿长以上管理人员值班,值班人员要做到24小时坚守岗位,随时掌握生产动态,发现问题及时处理,并及时向调度室汇报。
2)加强现场管理,积极消除安全隐患必须认真查处现场的安全隐患,对不查处安全隐患的人员进行经济处罚,与安全奖励挂钩;
在安全检查方面应加大力度,每周组织一次安全检查,并组织查岗小分队,重点对中晚班进行检查,及时发现和处理施工中的各种事故隐患;
对查出的安全隐患,及时要求施工单位进行整改。
对现场违章人员按煤矿企业奖惩细则的处罚标准加倍处罚。
3)加快煤矿安全立法,强化安全生产监管职能。
目前,我国煤矿安全监察与管理不分,行业职能部门既当运动员又当裁判员,因此难以正确处理好安全与效益的关系,难以严格依法开展安全执法与监督,“安全第一”方针的不能真正落到实处。
且行业主管部门在对煤矿进行安全监察时,主要依赖于规范性文件和行政命令,很难做到依法行政、依法监察。
国家应进一步健全安全生产监督法律法规,建立一个令行禁止、监察有力的职业安全监察体系。
4)保证安全生产投入,提高抗灾能力和安全技术资金投入比例为保障煤矿安全投入,国家应在法律法规中明确规定煤炭企业对安全技措资金的使用范围,对资金使用的情况定期进行审查和评估,真正做到专款专用,逐步提高安全技术资金比率。
督促煤矿企业加强安全与技术投入,建立起一个可靠、有效的安全生产科研保障体系,加快安全生产管理信息网络化建设,为实现我国煤矿安全监督管理科学化和现代化奠定坚实的基础。
5)根据煤矿生产的特殊性,建立有效、合法的中介服务机构按照《安全生产法》的规定,认真开展煤矿安全现状综合评估,对煤矿法人、矿长履行安全生产管理职能等情况进行定期严格考核,对矿用安全设备、器材、安全防护用品进行检测、检验,完善煤矿安全应急救护体系。
总之,安全管理是煤矿企业工作的重要组成部分。
目前,在新的安全形势下,国家对煤矿企业提出的“安全第一,预防为主,综合治理”、“安全为天”的警钟越敲越响。
而对待安全问题,单独靠专业部门一两名安全人员,要想迅速而准确地采取措施是不可能的。
只有深入生产第一线,上下一心,齐心协力才能解决问题。
解决问题的关键是把问题整理归纳,有组织、有领导地按轻重缓急抓落实。
要进行调查研究,把隐患分类排队,并提高检测事故隐患的手段才能保证施工的安全,避免伤亡,全面提升矿井的综合安全保障能力。
(四)煤炭洁净利用和煤化工领域
近年来,我国与煤炭伴生的洁净煤技术和煤化工技术也得到快速发展。
煤炭的洁净燃烧技术、煤炭气化、液化技术以及其他新型煤化工技术已经从工业试验研究阶段,逐步向工业化、产业化阶段发展。
下面介绍一下有关洁净煤和煤化工方面的内容。
1.洁净煤技术
洁净煤技术(CleanCoalTechnology,简称CCT)的概念是20世纪80年代中期美国首先提出的,是指在煤炭开发和加工利用全过程中旨在减少污染与提高利用效率的加工﹑燃烧﹑转换及污染控制等技术的总称,是使煤作为一种能源应达到最大限度潜能的利用,而释放的污染物控制在最低水平,达到煤的高效清洁利用的技术。
今年来在有关部门的配合与支持下,我国洁净煤技术开发、应用、推广方面有显著的进展。
主要表现在:
煤炭的深加工有所进步,煤炭入洗比重逐年提高;
工业型煤和水煤浆技术开发和应用开始起步,已有示范性项目投入使用;
煤炭气化技术已比较成熟,煤气已成为城市民用燃料的重要组成部分;
正在进行煤炭液化的性能和工艺条件试验,以及煤炭液化商业性示范厂的可行性研究。
发展洁净煤技术的重大意义:
采用煤炭加工技术,可有效降低原料煤的灰分和硫分,实现煤炭燃前脱硫降灰,大幅度减少大气污染物排放,减少煤炭利用的外部成本;
发展煤基合成燃料可以促进能源供应来源的多样性,改善单一的能源结构,在相当程度上缓解我国石油、天然气供应不足的问题,且经济投入和运行成本大大低于采用石油和天然气,有利于我国清洁能源的发展及长远的能源安全;
洁净煤技术汇集了电子、信息、自动化、环境科学等高新技术,已不再是传统的煤利用技术。
总之,洁净煤技术的开发与应用正处方兴未艾之势,国民经济和社会发展第十个五年计划已将洁净煤技术列为能源建设的重要内容,我国洁净煤技术将进入产业化发展阶段。
2.煤焦化
将煤隔绝空气加强热使其分解的过程,也称做煤的干馏。
煤焦化产品主要有焦炭、煤焦油(苯、甲苯等)、焦炉气(氢气、甲烷、乙烯、一氧化碳等)精氨水等。
这些产品已广泛应用于化工、医药、染料、农药和炭素等行业。
有些甚至是石油化学工业无法替代的,如吡啶喹啉类化合物和许多稠环化合物等。
3.煤气化
煤在高温条件下借助气化剂的化学作用将固体碳转化为可燃气体(气体混合物)的热化过程。
用空气、水蒸气、二氧化碳作为气化剂。
它们与煤中的碳发生非均相反应。
此外,煤热分解出的气态产物如CO2、H2O及烃类等也能与赤热的碳发生均相反应。
依气化法、气化条件及煤的性质不同,气化气的组成也不同。
根据煤气发生炉内所进行的气体过程特点,可以将煤层自上而下地分为干燥带、干馏带、还原带、氢化带和灰层,在干燥带和干馏带中,煤受到高温炉气的加热而放出水分并挥发。
剩下的焦炭在还原带和氧化带中进行氧化反应。
煤经过气化后得到的是粗煤气,再经过净化和加工后,可以得到各种化学品。
常用于煤气化的方式有:
1)固定床气化。
也称为移动床气化。
因为在气化过程中,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降很慢,甚至可视为固定不动,因此称之为固定床气化;
而实际上,煤料在气化过程中确是以很慢的速度向下移动的,故又称其为移动床气化。
2)流化床气化。
它是以小颗粒煤为原料,并在气化炉内使其悬浮分散在垂直上升的气流中,煤粒类似于沸腾的液体而剧烈地运动,从而使得煤料层内几乎没有温度梯度和浓度梯度。
3)气流床气化。
这是一种并流气化,用气化剂将煤粉带人气化炉内,也可将煤粉先制成水煤浆,然后用泵打人气化炉内。
煤料在高于其灰熔点的温度下被气化剂气化,灰渣以液态形式排出气化炉。
4)熔浴床气化。
也称熔融床气化,它是将粉煤和气化剂以切线方向高速喷人温度较高且高度稳定的熔池内,且池内熔融物保持高速旋转。
作为粉煤与气化剂的分散介质的熔融物可以是熔融的灰渣、熔盐或熔融的金属。
4.煤液化
所谓煤液化,是将煤中有机质转化为流质产物,其目的就是获得和利用液态的碳氢化合物来替代石油及其制品,包括直接液化技术和间接液化技术两部分,产品市场潜力巨大,工艺、工程技术集中度高,是中国新型煤化工技术和产业发展的重要方向。
煤的液化包括直接液化和间接液化两种方式。
煤的直接液化首先是德国科学家F.Bergius于1913年发明的。
其原理是煤炭在溶剂作用和高温高压条件下,直接与气态氢发生反应,使煤的氢含量增加,最后转变为液体的过程。
1927年德国燃料公司Pier等人开发了硫化钨和硫化铜催化剂,将液化过程分为糊相加氢和气相加氢两阶段进行,解决了工程化问题,建成了世界第一座工业化规模生产的煤直接液化企业,并陆续建设了20套煤直接液化装置。
煤的间接液化是德国皇家煤炭研究所的F.Fficher和H.Tropsch两个化学家于1923年首先提出的。
其原理是以煤为原料先经气化制合成气(CO+H2),再以合成气为原料,在催化剂的作用下合成液态烃类产品。
受两次世界石油危机的影响,美国、德国、英国、日本和前苏联等国家重新重视煤炭直接液化的新技术开发工作,纷纷组织了一批科研开发机构及企业开展了大量的研究开发工作,相继开发了多种工艺,其中最具代表性的工艺有以下几种。
1)溶剂精制煤工艺(SRC):
是由美国煤炭研究局(OCR)于1962年与Spencev化学公司联合开发的煤直接加氢液化工艺,最初是为了洁净利用美国高硫煤而开发的一种生产以重质燃料油为目的的煤液化转化技术,不使用催化剂,反应条件比较温和,利用煤自身的黄铁矿将煤转化为低灰低硫的常温下为固体的SRC-1。
后来又改进工艺,采用增加残渍循环,减压蒸馏方法进行固液分离,获得常温下也是液体的重质燃料油,即SRC-Ⅱ。
2)供氢溶剂法(EDS)是美国埃克森研究和工程公司于1966年首先开发使用供氢溶剂的煤液化工艺。
在液化反应组分中也不加催化剂,从而避免了煤中矿物质对催化剂的毒害作用,延长了高性能活性催化剂的使用寿命。
其与SRC法的区别是对循环溶剂单独进行催化加氢,从而提高了溶剂的供氧能力,液化油率提高,主要产品是轻质油和中质油。
3)氢煤法(H-Coal):
是由美国碳氢化合物公司(HRI)在氢油法(H-Oil)工艺基础上开发的与SRC法和EDS法完全不同的氢煤法(H-Coal)工艺,它采用高活性催化剂和沸腾床反应器,使得液化转化率和液体收率都有很大的提高,并且提高了液化粗油的品质,液化油中的杂原子含量也降低了。
4)德国IGOR工艺:
是由德国环保与原材料回收公司与德国矿冶技术检测有限公司(DMT)在德国老工艺的基础上开发的煤加氢液化与加氢精制一体化联合工艺。
原料煤经该工艺过程液化后,可直接得到加氢裂解及催化重整工艺处理的合格原料,从而改变了以往煤加氢液化制备合成油还需再单独进行加氢精制工艺处理的传统煤液化模式。
后来IGOR工艺又将煤糊相加氢和液化粗油加氢精制串联,既简化工艺,又可获得杂原子含量很低的精制油,代表着煤直接液化技术的发展方向。
5)俄罗斯低压加氢液体工艺:
是由前苏联国家科学院、国家可燃物研究所和图拉煤业公司共同开发的工艺。
利用黄煤和煤焦油加氢液化的生产经验和丰富的褐煤煤资源,采用煤糊相加氢应用高活性铜系催化剂的工艺,从而降低了加氢反应压力,提高了油品收率。
6)煤催化两段液化(CTSL)工艺:
是由美国碳氢化合物公司HRI于1982年开发的煤液化工艺。
其特点是:
煤液化的第一阶段和第二阶段都装有高活性的加氢和加氢裂解催化剂,两段反应器既分开又紧密相连,可以单独控制各自的反应条件,使煤的液化始终处于最佳操作状。
该工艺的煤液化油收率较高,达到80%左右,成本却比一段煤液化工艺降低17%,从而使煤液化工艺技术性和经济性很好地结合起来,油品质量得到了明显的改善和提高。
7)日本NEDOL煤液化工艺:
是由日本新能源技术综合开发机构(NEDO)于上世纪80年代初开发的烟煤液化工艺,它吸收了美国EDS工艺与德国新工艺的技术经验,将制备煤浆用的循环溶剂进行预加氢处理,以提高溶剂的供氢能力。
液化反应后的固液混合物则采用真空闪蒸方法进行分离,简化了工艺过程,易于放大生产规模,煤液化反应过程中使用了价格低廉的黄铁矿等铁基催化剂,也降低了煤液化成本。
同时也可使煤液化反应在较缓和的条件下进行,所产液化油的质量高于美国EDS工艺,操作压力低于德国煤液化新工艺。
8)煤共处理工艺:
它包括煤/油共处理和煤/废塑料共处理两种,煤/油共处理工艺是将原料煤与石油重油、油沙沥青或者石油渣油等重质油料一起进行加氢液化制油的工艺过程;
煤/废塑料共处理工艺则是将原料煤与废旧塑料和废旧橡胶等有机高分子废料一起进行加氢液化制油的工艺过程。
煤共处理工艺的原理是基于重质油或者废旧塑料和橡胶中富氢组成,可以作为液化过程中的活性氢供体,并以此来稳定煤热解产生的自由基“碎片”,该工艺可明显降低氢溶剂和氢气的消耗量,不仅可以使煤和渣油或废旧塑料同时得到加工,还可以提高液化原料的转化率,液化油产率和液化油产品的质量。
因此,煤共处理工艺比煤单独加氢液化具有更大的发展前景。
9)神华煤液化工艺:
是由神华集团研制开发的溶剂全加氢煤液化工艺,它是将美国HTI工艺的优点和日本TOP-NEDOL工艺的优点相结合,以改善煤液化装置的平衡运行,将煤浆与催化剂混合后进入到煤液化反应器中,经两级反应煤转化为轻质油品,经过高低压闪蒸处理后,经减压塔分馏出最重的组分,残渣内含50%的固体颗粒物,其余的所有煤液化全馏分油一并进入到稳定加氢装置中进行处理,产物进入分馏塔分馏到轻、中、重三个馏分,全部的重馏分和少量的中馏分混合后循环回煤液化装置配煤浆。
轻馏分和大部分的中馏分则需进一步处理。
稳定加氢装置则采用IFP公司的TSTAR工艺,其特点是可在线转换催化剂,并采用了对进料限制相对宽松的沸腾床反应器。
产品以油品(石脑油、柴油、航空煤油)和化工产品(石蜡、聚丙烯等)相结合。
5.新型煤化工和新型煤化工技术开发
新型煤化工是以煤炭为基本原料(燃料),C1化工技术为基础,以国家经济发展和市场急需的产品为方向,采用高技术,优化工艺路线,充分注重环境友好,有良好经济效益的新型产业。
它包括了煤炭液化(直接和间接),煤炭气化、煤焦、煤制合成氨、煤制甲醇、煤制烯烃等技术,以及集煤转化、发电、冶金、建材等工艺为一体的煤化联产和洁净煤技术。
其中煤炭焦化、煤气化-合成氨-化肥已经是我国主要的煤化工产业,随着科学技术的快速发展和市场的巨大需求,煤炭焦化、煤气化-甲醇、煤制油、烯烃及下游化工产品也得到了快速发展。
新型煤化工实际上是建立在传统煤化工基础上的,与传统煤化工密不可分。
其特点如下。
以清洁能源为主要产品;
煤炭-能源化工一体化;
高新技术及优化集成;
建设大型企业和产业基地;
有效利用煤炭资源;
经济效益最大化;
环境友好;
人力资源得到发挥。
当前新型煤化工技术开发热点主要是以下几个方面:
1)煤气化制甲基叔丁基醚:
采用多组分催化剂,可从合成气制含60%异丁醇和40%甲醇的混合物,异丁醇脱水成异丁烯,从而可完成由合成气直接制取甲基叔丁基醚,这是一条很值得重视的由天然气和煤为原料制取高辛烷值添加剂的技术路线。
2)以煤为原料生产甲醇及多种化工产品。
甲醇作为一种重要的基础化工原料,通过羰基化可进一步制取醋酸、醋酸酐、甲酸甲酯、甲酸、草酸等重要的化工产品。
另外还可以用于甲醇汽油(掺烧或者全烧),甲醇转化为甲醚替代液化石油气和柴油或制造燃料电池等等。
因此,作为可替代石油化工产品的甲醇下游产品是未来大规模发展甲醇生产提
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科课程论文 我国煤炭工业的发展 本科课程 论文 我国 煤炭工业 发展