桥梁抗震计算书解读.docx
- 文档编号:25670592
- 上传时间:2023-06-11
- 格式:DOCX
- 页数:17
- 大小:138.87KB
桥梁抗震计算书解读.docx
《桥梁抗震计算书解读.docx》由会员分享,可在线阅读,更多相关《桥梁抗震计算书解读.docx(17页珍藏版)》请在冰豆网上搜索。
桥梁抗震计算书解读
目录
1工程概况-1-
2地质状况-1-
3技术标准-2-
4计算资料-2-
5作用效应组合-3-
6设防水准及性能目标-3-
7地震输入-4-
8动力特性分析-5-
8.1动力分析模型-5-
8.2动力特性-6-
9地震反应分析及结果-6-
9.1反应谱分析-6-
9.1.1E1水准结构地震反应-6-
9.1.2E2水准结构地震反应-7-
10地震响应验算-8-
10.1墩身延性验算-10-
10.2桩基延性验算-10-
10.3支座位移验算-11-
11结论-11-
12抗震构造措施-11-
12.1墩柱构造措施-12-
12.2结点构造措施-12-
1工程概况
海口湾景观桥全桥24m桥宽。
桥梁全长666.08米,等高梁跨径布置有4x35m,3x35m两种形式。
桥墩为标准双柱式桥墩,墩柱高度在5.297m~12.079m之间。
单柱墩底尺寸为2.2x2.0m。
桩基为8Φ1200钻孔灌注桩。
本报告截取最不利一联P12~P16进行计算。
桥梁部分桥跨布置图如下:
图11桥梁部分桥跨布置图
2地质状况
根据野外鉴别、原位测试结合室内土工试验成果,本次钻探揭露120m深度范围内的地层综合划分为5个岩性单元层,岩土层自上至下分别为:
①素填土(Q4ml):
灰黄色,稍湿,稍密状,主要由石英质中粗砂人工回填而成,含较多碎石块,已完成自身固结,人工填岛堤岸及施工便道均为抛石。
该层仅在ZK0钻孔有揭露,揭露厚度3.30m,层顶高程5.45m。
②淤泥(Q4m):
深灰色,饱和,流塑-软塑状,主要由粘性土组成,切面光滑,干强度中等,韧性高,具有腐臭味,土质污手,该层层表呈现为淤泥混砂和流泥状,下套管时可依靠自重下落,层底呈软塑状粘土。
该层全场均有分布,厚度8.00~11.40m,平均厚度9.60m,层顶埋深0.00~3.30m,层顶高程2.15~-5.45m。
③粘土(Q2m):
棕红色、灰黄、灰色,湿,可塑~可塑偏软,主要由粘性土组成,局部含较多中粗砂,韧性中等,干强度高,切面光滑,稍有光泽反应,无摇震反应。
该层在钻孔ZK0~ZK6、ZK7-左、ZK7-右、ZK8-左、ZK7~ZK9-补、ZK11-补、ZK13-补和ZK15-补有揭露,厚度1.20~4.90m,平均厚度2.59m,层顶埋深8.00~14.80m,层顶高程-8.50~-17.41m。
④粗砂(Q2m):
灰黄、灰色,湿,中密状,主要由石英质粗砂组成,含少量粘性土,分选性较差,颗粒级配一般,胶结性一般。
该层在钻孔ZK9~ZK14、ZK8-右、ZK7~ZK9-补、ZK11-补、ZK13~ZK15-补有揭露,厚度0.50~6.10m,平均厚度2.12m,层顶埋深10.60~14.80m,层顶高程-10.98~-19.41m。
⑤粉质粘土(N2m):
深灰色、青灰色,可塑-硬塑-坚硬状,以硬塑和坚硬状为主,主要由粘性土组成,含少量中粗砂,岩芯呈土柱状-坚硬薄饼状,局部夹半岩状硬夹层,切面稍有光滑,具有光泽反应,无摇振反应,干强度较高,韧性中等。
该层全场均有揭露,未钻穿,层顶埋深9.90~19.20m,层顶高程-10.40~-20.61m。
3技术标准
1)荷载等级:
城市—A级;
2)人群荷载:
;
3)抗震设防烈度:
8度,设计基本地震加速度峰值:
0.3g;
4)抗震设防类别:
丁类,设计方法:
B类,抗震设防措施等级:
8级;
5)场地类型:
Ⅱ类;
6)环境类别:
Ⅲ类;
7)桥梁设计基准期:
100年;
4计算资料
1)计算软件:
MidasCivil—2011
2)支座类型:
铅芯隔震橡胶支座。
3)支座参数:
中墩支座高度为320mm,平面尺寸1320mm×1320mm,水平刚度
边墩支座高度为268mm,平面尺寸770mm×770mm,水平刚度
;
4)立柱:
立柱底平面尺寸:
2000×2200mm,立柱顶平面尺寸:
2000×2400mm(中墩),2000×2600mm(边墩),墩柱高度在5.297m~12.079m之间;墩柱底部截面配两层Φ32钢筋,共80根。
延伸至墩身以上4米处内层钢筋截断,4米以上墩身变为一层钢筋,共40根。
墩身底以上4米范围内箍筋采用Φ16@100钢筋,4米以上采用Φ16@150钢筋。
5)承台:
承台尺寸为横桥向长14.4m,纵桥向宽5.4m,高2.5m。
横桥向底层主筋为单层Φ32@130钢筋,顶层为主筋为Φ16@130钢筋;横桥向底层主筋为单层Φ32@130钢筋,顶层为主筋为Φ16@130钢筋;箍筋为Φ16@130钢筋,全部采用HRB335钢筋。
主筋保护层厚度为60mm,箍筋保护层厚度30mm。
6)桩基:
桥墩位处一共8根钻孔灌注桩,桩长为L=51.0m,桩径1.2m。
桩身配筋为:
主筋Φ28共22根,其中11根为通长筋,11根在距桩底20m处截断;箍筋为Φ10螺旋钢筋,在距承台底2m范围内为加密段,间距为@100mm,其余部分间距为@200mm。
主筋保护层厚度为8mm,箍筋保护层厚度30mm。
5作用效应组合
地震作用为偶然作用,根据《公路桥涵通用设计规范》、《城市桥梁抗震设计规范》、《公路桥梁抗震设计细则》(下简称抗震细则)的规定,确定以下4种偶然效应组合。
ØE1纵向组合:
恒载+E1纵向地震效应;
ØE1横向组合:
恒载+E1横向地震效应;
ØE2纵向组合:
恒载+E2纵向地震效应;
ØE2横向组合:
恒载+E2横向地震效应;
6设防水准及性能目标
1)根据《城市桥梁抗震设计规范》,该桥的抗震设防标准为丁类,因为该桥为大桥,本次设计同样考虑E2地震作用效应。
2)根据抗震细则,该桥的抗震性能分析,采用二水准设防、两阶段设计和基于结构性能的抗震设计思想。
根据震后结构修复的难易程度以及相应的经济损失所决定的风险程度。
结合《城市桥梁抗震设计规范》于抗震细则,本次抗震重要性系数Ci取值如
表61所示。
桥梁主要构件的性能目标如表62所示。
表61抗震重要性系数Ci
E1地震作用
E2地震作用
市政桥梁
0.35
1.7
表62桥梁结构抗震性能目标
设防地震水准
结构性能要求
结构校核目标
E1地震作用
桩基础在弹性范围内工作
地震反应小于首次屈服弯矩
桥墩在弹性范围内工作
地震反应小于首次屈服弯矩
支座不发生剪坏
验算支座剪力、位移
E2地震作用
桩基础基本在弹性范围内工作
地震反应小于等效屈服弯矩
墩柱保证不倒塌或严重结构损伤
可按延性构件设计
支座可以剪坏,但保证不落梁
验算限位挡块强度
7地震输入
根据抗震细则规定,阻尼比0.05的水平设计加速度反应谱取为:
其中,
为水平设计加速度反应谱最大值
,
为特征周期。
为抗震重要性系数,
为场地系数,
为阻尼调整系数,
水平向设计基本地震动加速度峰值。
根据设计原则和地质报告,桥梁场地为Ⅱ类场地,设防烈度区为8度区,按8度设防。
取为0.55s,场地系数
取为1.0;桥梁阻尼比为0.05,阻尼调整系数
为1,水平向设计基本地震动加速度峰值
为0.3g。
E1和E2水准下,主桥水平向设计加速度反应谱如4-1、42所示。
图71E1水准下水平向设计加速度反应谱
图72E2水准下水平向设计加速度反应谱
8动力特性分析
动力分析模型
桥梁动力特性分析采用离散结构的有限单元方法,有限元计算模型均以顺桥向为X轴,横桥向为Y轴,竖向为Z轴。
主梁,桥墩和桩基均离散为空间的梁单元,承台模拟为质点,用等效土弹簧模拟桩土相互作用。
与分析对象相接的两联作为边界条件参与建模。
结构动力特性和地震反应分析的三维有限元模型,如图81所示。
#05墩
#04墩
#02墩
#03墩
#01墩
图81动力计算模型
动力特性
根据图81的动力计算模型,对桥梁进行动力特性分析。
表81桥梁结构周期以及振型描述
振型顺序
周期(s)
振型描述
1
1.95
墩梁纵向振动
2
0.99
墩梁横向振动
3
0.91
主梁竖弯
4
0.88
主梁竖弯
5
0.73
主梁竖弯
9地震反应分析及结果
反应谱分析
采用E1和E2两种概率水平、阻尼比为5%的设计反应谱对该桥进行抗震性能分析。
E1水准下采用毛截面刚度;E2水准下延性构件采用折减刚度,其他构件采用毛截面刚度。
振型组合方式为CQC。
9.1.1E1水准结构地震反应
墩柱及桩基控制截面的地震反应计算结果汇于表91~表96内。
表91单柱控制截面内力最大值(E1纵向地震输入)
跨径
(m)
构件
截面位置
地震轴力(kN)
地震纵向剪力(kN)
地震纵向弯矩(kN.m)
4x35
#01
单柱墩底
62
317
3072
#02
单柱墩底
120
428
4770
#03
单柱墩底
126
427
4770
#04
单柱墩底
131
432
4772
#05
单柱墩底
65
317
3063
表92单柱控制截面内力最大值(E1横向地震输入)
跨径
(m)
构件
截面位置
地震轴力(kN)
地震横向剪力(kN)
地震横向弯矩(kN.m)
4x35
#01
单柱墩底
287
480
3284
#02
单柱墩底
376
571
4413
#03
单柱墩底
377
570
4407
#04
单柱墩底
372
571
4412
#05
单柱墩底
280
481
3290
表93单桩控制截面内力最大值(E1横向地震输入)
跨径
(m)
构件
截面位置
地震轴力(kN)
地震剪力(kN)
地震弯矩(kN.m)
4x35
#01
桩顶
531
174
380
#02
桩顶
624
179
381
#03
桩顶
635
179
359
#04
桩顶
632
182
386
#05
桩顶
533
174
376
9.1.2E2水准结构地震反应
支座地震反应如下表:
墩柱及桩基控制截面的地震反应计算结果汇于表9~表9内。
表94单柱控制截面内力最大值(E2纵向地震输入)
跨径
(m)
构件
截面位置
地震轴力(kN)
地震纵向剪力(kN)
地震纵向弯矩(kN.m)
4x35
#01
单柱墩底
78
959
9288
#02
单柱墩底
236
1296
14421
#03
单柱墩底
176
1295
14422
#04
单柱墩底
228
1313
14421
#05
单柱墩底
82
965
9224
表95单柱控制截面内力最大值(E2横向地震输入)
跨径
(m)
构件
截面位置
地震轴力(kN)
地震横向剪力(kN)
地震横向弯矩(kN.m)
4x35
#01
单柱墩底
868
1452
12368
#02
单柱墩底
1137
1727
10592
#03
单柱墩底
1139
1725
10615
#04
单柱墩底
1138
1727
10542
#05
单柱墩底
847
1453
12423
表96单桩控制截面内力最大值(E2横向地震输入)
跨径
(m)
构件
截面位置
地震轴力(kN)
地震剪力(kN)
地震弯矩(kN.m)
4x35
#01
0
1605
528
1148
#02
0
1889
542
1150
#03
0
1888
541
1149
#04
0
1890
542
1148
#05
0
1603
527
1148
10地震响应验算
桥梁抗震的目标是减轻桥梁工程的地震破坏,保障人民生命财产的安全,减少经济损失。
因此,既要使震前用于抗震设防的经济投入不超过我国当前的经济能力,又要使地震中经过抗震设计的桥梁的破坏程度限制在人们可以承受的范围内。
换言之,需要在经济与安全之间进行合理平衡,这是桥梁抗震设防的合理安全度原则。
综合考虑工程造价、结构遭遇的地震作用水平、紧急情况下维持交通能力的必要性以及结构的耐久性和修复费用等因素,来确定对应地震水平下结构的抗震性能目标。
桥梁结构抗震性能目标及检算准则见表62。
桥墩的初始屈服弯矩为截面最外层钢筋首次屈服(考虑相应轴力)时对应的弯矩,当地震反应小于初始屈服弯矩时,整个截面保持在弹性。
而等效屈服弯矩为根据截面M-分析(考虑相应轴力),把截面M-曲线等效为双线性所得到得等效屈服弯矩,此时,截面发生有限损伤,部分钢筋进入屈服,裂缝宽度可能超过容许值,但混凝土保护层还是完好,结构整体反应还在弹性范围。
极限弯矩为截面所能承受的最大弯矩。
如图101、102所示。
图101桥墩截面能力计算示意图
图102桩基截面能力计算示意图
将永久作用和地震作用进行最不利组合,根据现行规范计算截面强度或采用纤维单元进行M-分析,计算桥梁各个控制截面的抗弯能力,从而进行抗震性能验算。
墩身延性验算
由以上计算可知地震作用在顺桥向效应最大,因此以顺桥向为控制计算
表101墩底截面顺桥向抗弯承载能力
位置
恒载轴力
(kN)
开裂弯矩
(kN·m)
屈服弯矩
(kN·m)
极限弯矩(kN·m)
墩底
11550
7825
35148
47987
表102地震作用下顺桥向抗弯承载力验算
恒载
轴力
(kN)
E1地震抗弯验算
E2地震抗弯验算
计算弯矩
(kN·m)
开裂弯矩
(kN·m)
是否
满足
计算弯矩
(kN·m)
屈服弯矩
(kN·m)
极限弯矩
(kN·m)
是否
满足
11550
4770
7825
是
14422
35148
47987
是
E1地震下墩底截面计算弯矩小于开裂弯矩,墩底处于弹性状态;E2地震下墩底截面计算弯矩大于开裂弯矩,小于屈服弯矩,保护层混凝土已开裂。
因此,桥墩墩身满足地震下受力要求,满足两阶段设防水准要求。
桩基延性验算
表103桩基截面抗弯承载能力
位置
恒载轴力
(kN)
开裂弯矩
(kN·m)
屈服弯矩
(kN·m)
极限弯矩(kN·m)
墩底
2887
1594
2534
3367
表104地震作用下桩基截面抗弯承载力验算
恒载
轴力
(kN)
E1地震抗弯验算
E2地震抗弯验算
计算弯矩
(kN·m)
开裂弯矩
(kN·m)
是否
满足
计算弯矩
(kN·m)
屈服弯矩
(kN·m)
极限弯矩
(kN·m)
是否
满足
2887
386
1594
是
1150
2534
3367
是
E1地震下桩基截面计算弯矩小于开裂弯矩,桩基截面处于弹性状态;E2地震下桩基截面计算弯矩大于开裂弯矩,小于屈服弯矩,保护层混凝土已开裂。
因此,桥墩桩基满足地震下受力要求,满足两阶段设防水准要求。
支座位移验算
表105E1地震下支座位移验算
支座类型
支座型号
容许位移
(mm)
顺桥向位移验算
横桥向位移验算
最大位移(mm)
是否满足
最大位移
(mm)
是否满足
铅芯橡胶隔震支座
J4Q
100
48
是
13
是
表106E2地震下支座位移验算
支座类型
支座型号
容许位移
(mm)
顺桥向位移验算
横桥向位移验算
最大位移(mm)
是否满足
最大位移
(mm)
是否满足
铅芯橡胶隔震支座
J4Q
100
112
否(支座被剪断)
43
是
E2地震下支座的计算位移小于支座的容许地震位移,且有较大富裕,支座满足地震下位移和受力要求。
11结论
在立柱满足抗震细则关于延性构造措施要求,并且支座水平承载力设计值满足要求的情况下,经过抗震计算,本桥抗震分析结果如下:
1)E1地震作用下,支座水平位移小于其水平容许值,下部结构立柱及桩基处于弹性状态,满足结构处于弹性状态的抗震性能目标要求。
2)E2地震作用下,桥墩出现塑性铰,各个能力保护构件强度满足要求,满足结构不倒塌的抗震性能目标要求。
3)E2地震作用下,所有墩支座均被剪坏,限位块间隙10cm,不会发生落梁灾害。
墩柱及桩基保持在弹性范围,满足抗震性能目标要求。
12抗震构造措施
根据抗震细则第8章的规定,本工程桥梁延性构造措施如下:
墩柱构造措施
1)墩墩塑性铰区域内,箍筋采用加密布置,间距为100mm;
2)墩身箍筋采用直径等于16mm的HRB335级钢筋;
3)墩身纵向钢筋对称布置,纵向钢筋的面积均大于0.006Ah,且不超过0.04Ah,其中Ah为墩柱截面面积;
4)螺旋式箍筋的接头采用对接,矩形箍筋应有135°弯勾,并伸入核心混凝土之内6ds以上。
5)墩柱纵向钢筋伸至承台的另一侧面,纵向钢筋的锚固和搭接长度应在现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62)要求的基础上增加10ds,ds为纵向钢筋直径,不应在塑性铰区域进行纵向钢筋的连接。
6)塑性铰加密区域配置的箍筋深入到承台1.0m。
结点构造措施
由于支座剪断,墩柱保持弹性状态,结点区域未出现塑性铰,该区域箍筋可按构造配置。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 桥梁 抗震 计算 解读