福建省中小学新任教师公开招聘考试中学数学学科考试大纲.docx
- 文档编号:6501721
- 上传时间:2023-01-07
- 格式:DOCX
- 页数:13
- 大小:28.23KB
福建省中小学新任教师公开招聘考试中学数学学科考试大纲.docx
《福建省中小学新任教师公开招聘考试中学数学学科考试大纲.docx》由会员分享,可在线阅读,更多相关《福建省中小学新任教师公开招聘考试中学数学学科考试大纲.docx(13页珍藏版)》请在冰豆网上搜索。
福建省中小学新任教师公开招聘考试中学数学学科考试大纲
2013年福建省中小学新任教师公开招聘考试中学数学学科考试大纲
一、考试性质
福建省中小学新任教师公开招聘考试是符合招聘条件的考生参加的全省统一的选拔性考试。
考试结果将作为福建省中小学新任教师公开招聘面试的依据。
招聘考试应从教师应有的专业素质和教育教学能力等方面进行全面考核,择优录取。
招聘考试应具有较高的信度、效度,必要的区分度和适当的难度。
二、考试目标与要求
1.着重考查考生的数学专业基础知识、中学数学课程与教学论知识掌握情况,考查运用基本理论、知识与方法分析和解决有关中学数学教学问题的能力;是否具备从事中学数学教育、教学工作所必需的基本教学技能和持续发展自身专业素养的基本能力。
2.数学专业基础知识的要求分为了解、理解、掌握三个层次。
⑴了解:
要求对所列知识的含义及其背景有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中识别它。
⑵理解:
要求对所列知识内容有较深刻的认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。
⑶掌握:
要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。
3.基本能力包括思维能力、运算能力、空间想象能力、实践能力、创新能力。
⑴思维能力:
能对问题或资料进行观察、比较、分析、综合、抽象与概括;能用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。
⑵运算能力:
能根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
⑶空间想象能力:
能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析图形元素及其相互关系;能对图形进行分解、组合与变换;能运用图形与图表等手段形象地揭示问题的本质。
⑷实践能力:
能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能运用相关的数学方法解决问题并加以验证;能运用数学语言正确地表述和说明。
⑸创新能力:
能选择有效的教学方法和手段,对教学信息、情境进行分析;能综合运用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出中学数学教学中的新问题,找到解决问题的途径、方法和手段,创造性地解决教学问题。
三、考试范围与要求
(一)数学专业基础知识
1.集合与常用逻辑用语
考试内容:
集合。
命题。
常用逻辑用语。
考试要求:
(1)了解子集、交集、并集、补集有关术语和符号表示。
理解集合之间的运算法则,会求集合的交、并、补运算。
(2)了解命题、充要条件等概念的意义;掌握四种命题之间的关系,以及充分、必要、充要条件的判断。
(3)了解逻辑联结词“或”、“且”、“非”的含义,理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定。
2.函数
考试内容:
映射。
函数的概念及其表示。
函数的有界性、单调性、奇偶性、周期性。
基本初等函数及其图像。
有理数指数幂的运算性质。
对数的运算性质。
三角函数的概念。
同角三角函数的基本关系式。
三角函数的诱导公式。
两角和与差、二倍角的正弦、余弦、正切公式。
初等函数。
考试要求:
(1)了解映射的概念。
掌握函数的基本性质(定义域、值域、有界性、单调性、奇偶性、周期性)。
了解函数的零点与方程根的联系。
理解基本初等函数的图形与性质之间的关系,掌握基本初等函数的性质以及应用。
(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质。
理解对数的概念,掌握对数的运算性质。
(3)了解角、弧度制、任意角的三角函数、三角函数线等概念。
掌握同角三角函数的基本关系式、诱导公式,掌握两角和与差、二倍角的正弦、余弦、正切公式,掌握二倍角等三角公式的内在联系以及公式在求值、化简、证明中的应用。
掌握正弦函数、余弦函数、正切函数的图像、性质以及图像之间的变换规律,掌握正弦定理、余弦定理在解斜三角形中的应用。
(4)了解初等函数的概念。
能够运用初等函数的性质解决某些简单的实际问题。
3.不等式、数列与极限
考试内容:
不等式。
不等式的性质。
不等式的证明。
不等式的解法。
含绝对值不等式。
基本不等式。
数列的概念。
等差数列与等比数列。
数列的前n项和。
极限的概念。
极限的运算。
考试要求:
(1)掌握不等式的基本性质,会用分析法、综合法、比较法证明简单不等式,掌握简单不等式的解法,理解含绝对值不等式及其解法。
能利用基本不等式解决实际问题。
(2)了解方程与不等式的同解原理。
掌握一元代数方程(特殊类型)的解法,掌握初等超越方程的解法。
(3)理解算术平均与几何平均不等式、贝努利不等式、柯西不等式以及应用。
掌握凸函数定理与排序定理在证明不等式中的应用。
(4)掌握等差数列、等比数列的概念、通项公式以及前n项和公式的推导以及应用。
(5)掌握线性递归数列的概念以及通项公式的求法。
(6)了解极限的概念。
理解数列极限、函数极限的概念、意义以及运算规则,掌握数列极限、函数极限的计算方法。
掌握连续等基本概念。
4.算法初步
考试内容:
算法。
基本算法语句。
考试要求:
(1)了解算法的含义。
理解程序框图的三种基本逻辑结构:
顺序、条件分支、循环,并能够写出解决具体问题的程序框图。
(2)理解几种基本算法语句,体会算法的基本思想。
5.排列组合与二项式定理
考试内容:
排列。
组合。
二项式定理。
考试要求:
(1)了解排列、组合、排列数、组合数等概念。
(2)理解分类计数原理和分步计数原理,掌握常见排列或组合问题的解决方法。
(3)掌握相异元素允许重复的排列与组合、不尽相异元素的排列与组合问题的解法。
理解抽屉原理以及应用。
(4)掌握二项式定理以及二项展开式的性质以及应用。
6.向量与复数
考试内容:
向量的概念。
向量的运算。
向量的运用。
复数的概念。
复数的运算。
考试要求:
(1)了解平面向量的意义、几何表示以及向量运算的法则。
掌握平面向量的加法与减法、实数与向量的积、平面向量的坐标表示、平面向量的数量积、平面两点间的距离。
(2)了解空间向量的概念,了解空间向量的基本定理及其意义;掌握空间向量的线性运算及其坐标表示;掌握空间向量的数量积及其坐标表示。
理解直线的方向向量与平面的法向量。
能用向量方法证明有关直线和平面位置关系的一些定理;能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用。
(3)了解数系扩充的必要性,理解复数的概念、复数的运算,掌握复数的加、减、乘、除运算性质与规则。
7.推理与证明
考试内容:
推理的概念。
直接证明和间接证明。
反证法。
数学归纳法。
考试要求:
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。
(2)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点。
了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
8.导数与积分
考试内容:
导数的概念。
函数的和、差、积、商的求导法则。
复合函数的求导法则。
二阶导数。
隐函数的导数。
函数的微分。
导数的简单应用。
不定积分的概念、性质。
定积分的概念、性质。
牛顿一莱布尼茨公式。
二重积分的概念与性质。
考试要求:
(1)了解导数概念的实际背景,理解导数的几何意义。
(2)掌握基本导数公式,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数的导数,能求隐函数的导数。
了解二阶导数的定义及求法。
(3)能利用导数研究函数的单调性,会求函数的单调区间;会用导数求函数的极大值、极小值;会求闭区间上连续函数的最大值、最小值;会利用导数解决某些实际问题。
(4)了解不定积分的定义、性质。
掌握基本积分表。
会用不定积分的性质和基本积分公式求简单函数的不定积分。
(5)理解定积分、二重积分的定义、性质、几何意义。
掌握牛顿一莱布尼茨公式。
会用定积分的性质和牛顿一莱布尼茨公式求简单函数的定积分。
理解用定积分、二重积分求曲边梯形的面积、曲顶柱体的体积的思想方法。
(6)了解微积分基本定理的含义。
了解微积分的发展历史,理解微积分的基本思想,能够从数学分析的观点、原理与方法,处理解决一些初等数学中无法深究的问题。
9.立体几何
考试内容:
简单几何体的结构。
三视图。
直观图。
平面的基本性质。
空间两直线、两平面、直线与平面的位置关系。
多面体。
柱、锥、台、球。
考试要求:
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图。
(2)了解球、棱柱、棱锥、台、球的表面积和体积的计算公式。
(3)了解空间两直线、两平面、直线与平面的几种位置关系;了解可以作为推理依据的公理和定理,并能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题(延伸平面几何的相关命题)。
10.解析几何
考试内容:
直线的斜率。
直线的方程。
圆的方程。
曲线与方程。
椭圆、双曲线、抛物线。
空间直线与平面。
考试要求:
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式。
掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式。
能够根据直线的方程判断两条直线的位置关系。
(3)掌握圆的标准方程和一般方程。
理解椭圆、双曲线、抛物线之间的内在联系。
掌握椭圆、双曲线、抛物线的定义以及标准方程、几何性质。
(4)了解曲线与方程的概念。
理解坐标法解决问题的基本思想,理解直线与圆的位置关系,掌握直线与椭圆、双曲线、抛物线的位置关系。
(5)理解空间曲线与方程的概念。
掌握空间直线、空间平面的方程。
(6)了解极坐标与参数方程的概念,会用极坐标法解决解析几何中的简单问题。
掌握直线、圆、椭圆、双曲线、抛物线的参数方程,并会利用参数方程解决解析几何中的简单问题。
11.概率与统计
考试内容:
随机抽样。
抽样方法。
总体分布的估计。
正态分布。
独立性检验。
线性回归。
随机事件的概率。
等可能性事件的概率。
互斥事件有一个发生的概率。
相互独立事件同时发生的概率。
独立重复试验。
离散型随机变量的分布列。
离散型随机变量的期望值和方差。
考试要求:
(1)理解随机抽样的必要性和重要性。
会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
(2)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义。
了解两个互斥事件的概率加法公式。
(3)理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率。
了解几何概型的意义。
(4)理解取有限个值的离散型随机变量的概念,理解取有限个值的离散型随机变量的均值、方差及其分布列的概念,会求取有限个值的离散型随机变量的分布列,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。
(5)了解条件概率和两个事件相互独立的概念,理解次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。
(6)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
(7)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。
(8)理解超几何分布及其导出过程,并能进行简单的应用。
(9)了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。
了解回归的基本思想、方法及其简单应用。
了解一些常见的统计方法,并能应用这些方法解释一些实际问题。
12.矩阵与行列式
考试内容:
行列式。
矩阵。
考试要求:
(1)了解线性代数的基本内容,掌握行列式、矩阵、向量空间的有关概念与意义。
理解行列式的性质、矩阵的初等变换以及向量间的线性关系。
(2)掌握一般线性方程组解的结构与解法。
(二)中学数学课程与教学论内容
1.中学数学课程的相关内容。
《普通高中数学课程标准(实验)》、《义务教育数学课程标准(2011年版)》(初中数学)中的课程性质、基本理念、课程目标、教学建议、评价建议等。
2.中学数学教学原则、教学过程、常用数学教学模式与方法、数学概念教学、数学命题与推理教学、数学思想方法的教学、教学手段应用、基本教学技能、教学案例的设计和评析、教学评价、试题评价等。
四、考试形式
1.答卷方式:
闭卷、笔试。
2.考试时间:
120分钟。
3.试卷分值:
150分。
五、试卷结构
1.主要题型:
选择题、填空题和解答题等,其中选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题、论述题和案例分析题等,解答应写出文字说明、演算步骤或推证过程。
2.内容比例:
数学学科专业基础主干知识约占60%,中学数学课程与教学论约占40%。
3.试题难易比例:
容易题约占40%,中等难度题约占40%,较难题约占20%。
数学教师业务考试试题
一、填空(每空0.5分,共20分)
1、数学是研究(数量关系 )和( 空间形式)的科学。
2、数学课程应致力于实现义务教育阶段的培养目标,体现(基础性)、(普及性)和(发展性)。
义务教育的数学课程应突出体现(全面 )、(持续 )、(和谐发展)。
3、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:
(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展)。
4、学生是数学学习的(主体),教师是数学学习的(组织者 )、(引导者)与(合作者)。
5、《义务教育数学课程标准》(修改稿)将数学教学内容分为(数与代数)、(图形与几何)、(统计与概率)、( 综合与实践)四大领域;将数学教学目标分为(知识与技能)、(数学与思考)、(解决问题 )、(情感与态度)四大方面。
6、学生学习应当是一个(生动活泼的)、主动的和(富有个性)的过程。
除(接受学习)外,(动手实践)、(自主探索)与(合作交流)也是学习数学的重要方式。
学生应当有足够的时间和空间经历观察、实验、猜测、(计算)、推理、(验证)等活动过程。
7、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学的“四基”包括(基础知识)、(基本技能)、(基本思想)、( 基本活动经验);“两能”包括(发现问题和提出问题能力)、
(分析问题和解决问题的能力)。
8、教学中应当注意正确处理:
预设与(生成)的关系、面向全体学生与(关注学生个体差异)的关系、合情推理与(演绎推理)的关系、使用现代信息技术与(教学手段多样化)的关系。
二、简答题:
(每题5分,共30分)
1、义务教育阶段的数学学习的总体目标是什么?
通过义务教育阶段的数学学习,学生能:
(1).获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本活动经验。
(2).体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
(3).了解数学的价值,激发好奇心,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
2、课程标准对解决问题的要求规定为哪四个方面?
(1)初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,发展应用意识和实践能力。
(2)获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
(3)学会与他人合作、交流。
(4)初步形成评价与反思的意识。
3、“数感”主要表现在哪四个方面?
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计、数量关系等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
4、课程标准的教学建议有哪六个方面?
(1).数学教学活动要注重课程目标的整体实现;
(2).重视学生在学习活动中的主体地位;
(3).注重学生对基础知识、基本技能的理解和掌握;
(4).引导学生积累数学活动经验、感悟数学思想;
(5).关注学生情感态度的发展;
(6).教学中应当注意的几个关系:
“预设”与“生成”的关系。
面向全体学生与关注学生个体差异的关系。
合情推理与演绎推理的关系。
使用现代信息技术与教学手段多样化的关系。
5、估算有哪三大特点?
如何评价估算?
① 估算过程多样
② 估算方法多样
③ 估算结果多样
评价:
在上述前提下,估算没有对和错之分,但有估算结果与精确计算结果的差异大小之分。
6、可以用哪四种不同的方式确定物体所在的方向和位置?
①上下、前后、左右
②东、南、西、北、东南、西南、东北、西北
③数对
④观测点、方向、角度、距离
三、运用课程标准的新理念分析(10分)
下面上《“1——5”的认识》的教学设计中的教学目标,请你依据课程标准对这一内容的教学目标加以简评。
教学目标:
1、使学生会用1——5各数表示物体的个数,知道1——5的数序,能认读1——5各数,建立初步的数感。
2、培养学生初步的观察能力和动手操作能力。
3、体验与同伴互相交流学习的乐趣。
4、让学生感知生活中处处有数学。
简 评:
(1)全面(知识与技能、数学思考、解决问题、情感与态度)。
(2)具体(数量、数序、数感)。
(3)准确(会用、体验、感知)。
(4)突出了学习方式的更新
新课程理论测试题
(二)
一、填空题:
1、改变课程过于注重知识传授的倾向,强调形成()的学习态度,使获得( )与( )的过程同时成为学会学习和形成正确价值观的过程。
2、改革课程结构过于强调学科本位、科目过多和缺乏整合的现状,整体设置九年一贯的课程和课时比例,并设置()以适应不同地区和学生发展的需要,体现课程结构的()、()和()。
3、基础教育课程改革要以邓小平同志教育要()、()、()和江泽民同志的()的重要思想为指导,全面贯彻()方针,全面()教育。
4、义务教育阶段的数学课程应突出体现()、()和(),使数学教育(),实现(),()()。
5、现代信息技术的发展对数学教育的()、()、()、()产生了重大的影响。
6、新数学课程标准的结构包括()个部分,分别是()、()、()、()。
7、《标准》指出:
“()、()与()是学生学习数学的重要方式。
二、判断题:
1、教师即课程。
()
2、教学是教师的教与学生的学的统一,这种统一的裨是交往。
()
3、教学过程是忠实而有效地传递课程的过程,而不应当对课程做出任何变革。
()
4、教师无权更动课程,也无须思考问题,教师的任务是教学。
()
5、从横向角度看,情感、态度、价值观这三个要素具有层次递进性。
()
6、从纵向角度看,情感、态度、价值观这三个要素具有相对贸易独立性。
()
7、从推进素质教育的角度说,转变学习方式要以培养创新精神和实践能力为主要目的。
()
8、课程改革核心环节是课程实施,而课程实施的基本途径是教学。
()
9、对于求知的学生来说,教师就是知识宝库,是活的教科书,是有学问的人,没有教师对知识的传授,学生就无法学到知识。
()
三、简答题:
1、怎么认识数学?
2、在这次基础教育课程改革中,教师的角色应发生哪些变化?
3、一所学校期末考试二年、三年、五年、六年有如下题目。
(1)二年级:
计算①438-175,②2573+824,③6632-2820,④10275-382
(2)三年级:
读出下面各数:
①3004000②130040000
(3)五年级:
①125×32×25,②5330÷205,③
(4)六年级:
一件工作,甲单独做10天完成,乙单独做15天完成,两人合作3天后,剩下的由乙单独做,需几天完成?
以上命题是否符合《数学课程标准》的要求?
请具体说明。
4、新课程需要什么样的教学观念?
新课程理论测试题
(二)参考答案
一、填空题:
1、积极主动、基础知识、基本技能
2、综合课程、均衡性、综合性、选择性
3、面向现代化、面向世界、面向未来、三个代表、党的教育、推进素质
4、基础性、普及性、发展性、面向全体学生、人人有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展
5、价值、目标、内容、教与学的方式
6、四、前言、课程目标、内容标准、课程实施建议
7、动手实践、自主探索、合作交流
二、判断题:
1、×2、√3、×4、×5、√ 6、√7、√8、√9、×
三、简答题:
1、《标准》指出,数学是人类生活的工具;数学是人类用于交流的语言;数学能赋予人创造性;数学是一种人类文化。
《标准》对数学没有采取简单定义的方法。
因为数学不仅是一门知识,更是人类实践活动创造的产物,是由诸多元素构成的多元结构;社会与文化不仅推动着数学的发展,同时数学对推动社会与文化发展也起关键的作用;对数学的认识不仅要从数学家关于数学本质的观点中领悟,更要从数学活动的亲身实践中去体验。
从课堂教学的眼光看待数学:
大众数学、生活数学、活动数学、探索数学。
2、数学教学活动应当赋予学生以最多的思考,动手和交流的机会。
与此相伴的是,教师的角色要作出改变。
《标准》指出:
“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。
这就是说,数学课程的一切都是围绕学生的发展展开。
所以学生是当然的“主人”。
再次明确这一点,意在进一步改变传统的数学教学模式,拓宽学生在数学教学活动中的空间。
教师要从一个知识传授者墨迹为学生发展的促进者;要从教室空间支配者的权威地位,向数学学习活动的组织者、引导者和合作者的角色转换。
教师角色转变的重心在于传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。
表面上看,似乎教师的空间被“压缩”了,实际上《标准》赋予教师更高的要求、更大的责任和更多的期望。
教师的作用,特别要体现在引导学生思考和寻找眼前的问题生活中的问题与自己已有的知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 福建省 中小学 新任 教师 公开 招聘 考试 中学数学 学科 大纲