相似三角形的性质及判定知识点总结+经典题型总结学生版.docx
- 文档编号:890711
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:18
- 大小:516.63KB
相似三角形的性质及判定知识点总结+经典题型总结学生版.docx
《相似三角形的性质及判定知识点总结+经典题型总结学生版.docx》由会员分享,可在线阅读,更多相关《相似三角形的性质及判定知识点总结+经典题型总结学生版.docx(18页珍藏版)》请在冰豆网上搜索。
相似三角形的性质及判定知识点总结+经典题型总结学生版
相似三角形的性质及判定
中考要求
板块
考试要求
A级要求
B级要求
C级要求
相似三角形
了解相似三角形
掌握相似三角形的概念,判定及性质,以及掌握相关的模型
会运用相似三角形相关的知识解决有关问题
知识点睛
一、相似的有关概念
1.相似形
具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换.
2.相似图形的特性
两个相似图形的对应边成比例,对应角相等.
3.相似比
两个相似图形的对应角相等,对应边成比例.
二、相似三角形的概念
1.相似三角形的定义
对应角相等,对应边成比例的三角形叫做相似三角形.
如图,与相似,记作,符号读作“相似于”.
2.相似比
相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.
三、相似三角形的性质
1.相似三角形的对应角相等
如图,与相似,则有.
2.相似三角形的对应边成比例
与相似,则有(为相似比).
3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.
如图1,与相似,是中边上的中线,是中边上的中线,则有(为相似比).
图1
如图2,与相似,是中边上的高线,是中边上的高线,则有(为相似比).
图2
如图3,与相似,是中的角平分线,是中的角平分线,则有(为相似比).
图3
4.相似三角形周长的比等于相似比.
如图4,与相似,则有(为相似比).应用比例的等比性质有.
图4
5.相似三角形面积的比等于相似比的平方.
如图5,与相似,是中边上的高线,是中边上的高线,则有(为相似比).进而可得.
图5
四、相似三角形的判定
1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:
两角对应相等,两个三角形相似.
3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.
4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:
三边对应成比例,两个三角形相似.
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)
7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.
五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式
证明比例式或等积式的主要方法有“三点定形法”.
1.横向定型法
欲证,横向观察,比例式中的分子的两条线段是和,三个字母恰为的顶点;分母的两条线段是和,三个字母恰为的三个顶点.因此只需证.
2.纵向定型法
欲证,纵向观察,比例式左边的比和中的三个字母恰为的顶点;右边的比两条线段是和中的三个字母恰为的三个顶点.因此只需证.
3.中间比法
由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.
比例中项式的证明,通常涉及到与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解.
倒数式的证明,往往需要先进行变形,将等式的一边化为1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之.
复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明.
六、相似证明中常见辅助线的作法
在相似的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论.常见的等量代换包括等线代换、等比代换、等积代换等.
如图:
平分交于,求证:
.
证法一:
过作,交的延长线于.
∴,.
∵,∴.∴.
∵,∴.
点评:
做平行线构造成比例线段,利用了“A”型图的基本模型.
证法二;过作的平行线,交的延长线于.
∴,∴.
∵,∴.
点评:
做平行线构造成比例线段,利用了“X”型图的基本模型.
七、相似证明中的面积法
面积法主要是将面积的比,和线段的比进行相互转化来解决问题.
常用的面积法基本模型如下:
如图:
.
如图:
.
如图:
.
八、相似证明中的基本模型
例题精讲
一、与三角形有关的相似问题
【例1】如图,在中,,点在边上,若在增加一个条件就能使,则这个条件可以是.
【巩固】如图,、是的边、上的点,且,求证:
.
【巩固】如图,在中,于,于,的面积是面积的4倍,,求的长.
【例2】如图,中,,点是内一点,使得,,则.
【巩固】如图,已知三个边长相等的正方形相邻并排,求.
【例3】如图,已知中,,,与相交于,则的值为()
A.B.1C.D.2
【巩固】在中,,的延长线交的延长线于,求证:
.
【巩固】如图,、为边上的两点,且满足,一条平行于的直线分别交、和的延长线于点、和.
求证:
.
【例4】如图,已知,若,,,求证:
.
【巩固】如图,,,垂足分别为、,和相交于点,,垂足为.证明:
.
【巩固】如图,已知,找出、、之间的关系,并证明你的结论.
【例5】如图,在四边形中,与相交于点,直线平行于,且与、、、
及的延长线分别相交于点、、、和.求证:
【巩固】已知,如图,四边形,两组对边延长后交于、,对角线,的延长线交于.求证:
.
【考点】相似三角形的性质与判定
【难度】5星
【题型】解答
【关键词】
【例6】如图,中,,若分别是的中点,则;
若分别是的中点,则;
若分别是的中点,则;
…………
若分别是的中点,则_________.
【例7】如图,内有一点,过作各边的平行线,把分成三个三角形和三个平行四边形.若三个三角形的面积分别为,则的面积是.
【例8】如图,梯形的两条对角线与两底所围成的两个三角形的面积分别为,则梯形的面积是()
A.B.
C.D.
【巩固】如图,梯形中,,两条对角线、相交于,若,那么.
二、与平行四边形有关的相似问题
【例9】如图,已知平行四边形中,过点的直线顺次与、及的延长线相交于点、、,若,,则的长是.
【巩固】如图,已知,,求证:
.
【例10】如图,的对角线相交于点,在的延长线上任取一点,连接交于点,若,求的值.
【巩固】如图:
矩形的面积是36,在边上分别取点,使得,,且与的交点为点,求的面积。
三、与梯形有关的相似问题
【例11】已知:
如图,在梯形中,,是的中点,分别连接、、、,且与交于点,与交于.
(1)求证:
(2)若,,求的长.
【巩固】如图,在梯形中,,分别是的中点,交于,交于,求的长.
【例12】如图,已知梯形中,,,,,(),,交于点,连接.
(1)判断与,与是否分别一定相似,若相似,请加以证明.
(2)如果不一定相似,请指出、满足什么关系时,它们就能相似.
四、与内接矩形有关的相似问题
【例13】中,正方形的两个顶点、在上,另两个顶点、分别在、上,,边上的高,求.
【巩固】如图,已知中,,四边形为正方形,其中在边上,在上,求正方形的边长.
【例14】如图,已知中,四边形为正方形,在线段上,在上,如果,,求的面积.
【巩固】如图,在中,,,,动点(与点,不重合)在边上,∥交于点.
⑴当的面积与四边形的面积相等时,求的长.
⑵当的周长与四边形的周长相等时,求的长.
⑶试问在上是否存在点,使得为等腰直角三角形?
若不存在,请简要说明理由;若存在,请求出的长.
课后作业
1.直线与的边相交于点,与边相交于点,下列条件:
①;②;③;④中,能使与相似的条件有()
A.1个B.2个C.3个D.4个
2.如图,在的边上取一点,在取一点,使,直线和的延长线相交于,求证:
3.已知:
为的中位线上任意一点,、的延长线分别交对边、于、,求证:
4.如图,已知在矩形中,为的中点,交于,连接().
(1)与是否相似,若相似,证明你的结论;若不相似,请说明理由.
(2)设是否存在这样的值,使得∽,若存在,证明你的结论并求出值;若不存在,说明理由.
5.如图,在梯形中,,,,若,且梯形与梯形的周长相等,求的长.
6.如图,已知中,,四边形为正方形,其中在边上,在上,求正方形的边长.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 性质 判定 知识点 总结 经典 题型 学生