污水处理厂卧螺离心机的运行操作技术Word文档下载推荐.docx
- 文档编号:13439811
- 上传时间:2022-10-10
- 格式:DOCX
- 页数:13
- 大小:25.58KB
污水处理厂卧螺离心机的运行操作技术Word文档下载推荐.docx
《污水处理厂卧螺离心机的运行操作技术Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《污水处理厂卧螺离心机的运行操作技术Word文档下载推荐.docx(13页珍藏版)》请在冰豆网上搜索。
卧螺离心机的使用效果,其机械部分带来的影响分为可调节因素和不可调
节因素,现分别进行说明,首先了解了其作用原理,就能够在使用中对其进行
有效的掌控。
2.1
不可调节的机械因素
A
转鼓直径和有效长度
转鼓直径越大,有效长度越长,其有效沉降面积越大,处理能力也越大,
物料在转鼓内的停留时间也越长,在相同的转速下,其分离因数就越大,分离
效果越好。
但受到材料的限制,离心机的转鼓直径不可能无限制地增加,因为
随着直径的增加可允许的最大速度会随材料坚固性的降低而降低,从而离心力
也相应降低。
通常转鼓直径在
200~1000mm
之间,长径比在
3~4
之间。
现在的
卧螺离心机的发展有倾向于高转速的大长径比的趋势,这种设备更加能够适应
低浓度污泥的处理,泥饼干度更好。
另外,在相同处理量的情况下,大转鼓直径的离心机可以以较低的差速度
运行,原因是大转鼓直径的螺旋输渣能力较大,要达到相同的输渣能力,小转
鼓直径的离心机必须靠提高差速度来实现。
B
转鼓半锥角
1
沉降在离心机转鼓内侧的沉渣沿转鼓锥端被推向出料口时,由于离心力的
作用而受到向下滑移的回流力作用。
转鼓半锥角是离心机设计中较为重要的参
数。
从澄清效果来讲,要求锥角尽可能大一些;
而从输渣和脱水效果来讲,要
求锥角尽可能小些。
由于输渣是离心机正常工作的必要条件,因此最佳设计必
须首先满足输渣条件。
对于难分离的物料如活性污泥半锥角一般在
6
度以内,
以便降低沉渣的回流速度。
对普通一般物料半锥角在
10
度以内就能保证沉渣的
顺利输送。
C
螺距
螺距即相邻两螺旋叶片的间距,是一项很重要的结构参数,直接影响输渣
的成败。
在螺旋直径一定时,螺距越大,螺旋升角越大,物料在螺旋叶片间堵
塞的机会就越大。
同时大螺距会减小螺旋叶片的圈数,致使转鼓锥端物料分布
不均匀而引起机器振动加大。
因此对于难分离物料如活性污泥,输渣较困难,
螺距应小些,一般是转鼓直径的
1/5~1/6,以利于输送。
对于易分离物料,
螺距应大些,一般为转鼓直径的
1/2~1/5,以提高沉渣的输送能力。
D
螺旋类型
螺旋是卧螺离心机的主要构件,它的作用是输送沉降在转鼓内侧的沉渣和
顺利排掉沉渣,它不仅是卸料装置,也决定了生产能力、使用寿命和分离效果。
螺旋的类型根据液体和固体在转鼓内相对移动方式的不同分为逆流式和顺流式。
逆流式离心机的加料腔在螺旋中部,也就是位于干燥区和沉降区之间的边界附
近,以保证液相有足够的沉降距离,但固相仅能停留其通过圆锥部位所需的时
间,因此要求有较高的离心力;
物料由这里进入转鼓内会引起此区已沉降的固
体颗粒因扰动再度浮起,还会产生湍流和附加涡流,使分离效果降低。
顺流式离心机由于进料口在转鼓端部,避免了逆流式的湍流,保证沉渣不
受干扰,离心机全长都起到了沉降作用,扩大了沉降面积,悬浮液在机内停留
时间增长,从而使分离效果得到提高。
由于延长和没有干扰的沉降可有效地减
少絮凝剂的使用量,使机内流体的流动状态得到很大改善,并且可通过加大转
鼓直径来提高离心力,因此可显著降低转速,节省电力消耗,同时减少噪声,
延长机器的寿命。
顺流式螺旋结构的离心机特别适用于固液密度差小,固相沉降性能差,固
相含量低的难分离物料。
但顺流式离心机的滤液是靠撇液管排出,滤液通过撇
液管时未分离出的固相颗粒会再分离沉积在撇液管内,日久会堵塞撇液管通道,
需定期冲洗。
近年来,随着对污泥脱水要求的日益提高,出现了高效型螺旋结构。
如瑞
典
AlfaLaval
公司的
BD
挡板技术,即在离心机锥段的螺旋出料端设置一个特
殊挡板,可使离心机处于超深液池状态,以增加对泥饼的压渣力,并且只输送
2
下部沉渣,而将上部含水率高的污泥截留在压榨锥段外侧,实现压榨脱水,使
出泥更干。
瑞典
NOXON
公司采用斜板沉淀原理的
Lamella
专利技术,则将离心
机螺旋推料器叶片设计成最佳倾斜状态,其叶片倾角、螺距、叶片间距等参数
均经过优化设计,处理能力提高,降低了絮凝剂的消耗量及泥饼含水率。
2.2
可调节的机械因素
转鼓转速
转鼓转速的调节通常通过变频电机或液压马达来实现。
转速越大,离心力
越大,有助于提高泥饼含固率。
但转速过大会使污泥絮凝体被破坏,反而降低
脱水效果。
同时较高转速对材料的要求高,对机器的磨损增大,动力消耗、振
动及噪声水平也会相应增加。
差速度(差数比)
差速度直接影响排渣能力、泥饼干度和滤液质量,是卧螺离心机运行中重
要的需要根据运行情况进行调节的参数之一。
提高差速度,有利于提高排渣能
力,但沉渣脱水时间会缩短,脱水后泥饼含水率大,同时过大差速度会使螺旋
对澄清区液池的扰动加大,滤液质量相对差一些(俗称“返混”)。
降低差速
度,会加大沉渣厚度,沉渣脱水时间增长,脱水后泥饼含水率降低,同时螺旋
对澄清区物料的扰动小,滤液质量也相对好些,但会增大螺旋推料的负荷,应
防止排渣量减小造成离心机内沉渣不能及时排出而引起的堵料现象,防止滤液
大量带泥,这时就必须减小进料量或提高差速度,一些型号的设备具有自动加
快排渣的功能,既当设定扭矩达到某一限定值后,设备会自动降低进泥量和进
药量,增加差速度,将堆积的泥环层快速推出,待扭矩降低到某一数值后,流
量和差数度再自动恢复正常。
这是一种有效保护设备的措施,但是,在长期运
行中,应避免频繁出现这种情况,因为这样容易使设备经常处于不稳定流量和
不稳定差数度状况,过程中的波动会影响处理效果和使处理能力下降。
因此,
应根据物料性质、处理量大小、处理要求及离心机结构参数来确定差速度大小。
就是说,在现场要根据情况寻找到最佳的处理量、处理效果需求的差速值范围,
以实现满足泥饼干度的情况下尽可能高的处理能力。
简单地说就是:
处理能力和处理效果存在矛盾,要提高处理能力,就要增
加差速比,但可能会降低泥饼干度;
要提高泥饼干度,就要降低差数度,从而
降低了处理能力,所以,现场的调试工作就是要寻找到符合各自现场实际污泥
性质条件时最佳的设备运行工况参数,以实现最高设备运行效率和最佳处理效
果双重目的。
这没有简单的数据可以计算,只有依靠长期的实际调试积累经验,
并及时依照变化进行调整。
同时,在一定范围内,差数度的控制和絮凝剂投加量的控制互为补充,在
要求达到一定泥饼干度情况下,当差数度降低时,可同时节省絮凝剂投加量。
简单讲就是增加了设备处理压力也就减少了絮凝剂使用压力。
所以说,适当地
3
采用尽可能低的差数度可以在一定程度上减少絮凝剂的消耗,俗话讲叫做“设
备运转好就省药、设备运转不好就费药”,设备的好坏不仅仅取决于设备本身
的设计和加工精度问题,同时也涉及对设备运转工况参数的控制。
对于具有差
数度自动调节功能的离心机,差数度的参数设定要结合长期的使用情况确定,
并根据可能发生的各种变化随时修正。
液环层厚度
液环层厚度是设备优化的一个重要参数,直接影响离心机的有效沉降容积
和干燥区(岸区)长度,进而影响污泥脱水的处理效果。
一般在停机状态下通
过手动调节液位挡板的高低来实现,调整时必须确保各个液位挡板的高低一致,
否则会导致离心机运行时剧烈振动,也有部分国外厂商的产品可以实现液环层
厚度的自动调节。
液环层厚度增加,会使沉降面积增大,物料在机内停留时间也会相应增加,
滤液质量提高,但同时机内的干燥区(岸区)长度缩短,导致泥饼干度降低。
相反,调低液环层厚度可获得较高的泥饼含固率,但要以牺牲滤液质量为代价。
因此应合理地调节液位挡板的高低使泥饼干度与滤液质量达到最佳组合。
一般
情况下,很多设备供应商将液位挡板在设备出厂时预先进行了调节,但因不同
的使用现场条件存在差异,若运行状态不理想,可请设备厂家工程师配合进行
现场液位挡板的调整,使其更加满足实际需求。
2.3工艺因素
由于离心机是利用固液两相的密度差来实现固液分离的,因此污泥颗粒比
重越大越易于分离。
一般情况下,城市污水处理厂的初沉污泥较易脱水,剩余
污泥较难脱水,而混合污泥的脱水性能介于两者之间,不同污水水质产生的污
泥和采用不同水处理工艺得到的污泥会有较大的差异,因此在污泥脱水中会有
不同的表现。
为改善污泥脱水性能,进行机械脱水前一般应均匀加入适量的有机高分子
絮凝剂,如聚丙烯酰胺(PAM),来降低污泥的比阻,使污泥固相和液相分离后更
易于脱水,絮凝剂的种类必须和污泥特性相适应及与设备类型和运行工况相适
应。
很多情况下,在絮凝剂选型烧杯试验中表现较好的药剂,并没有在实际应
用中有更好的表现,很重要的原因就是药剂特性虽然在一定程度上满足污泥特
性,但是与设备的运行工况并不能完全满足。
根据实际运行情况表明,在絮凝剂(污泥脱水剂)投加量达到一定程度后,
投加絮凝剂的多少对离心脱水的泥饼含固率的影响很小,对滤液的质量影响较
大。
因此进行污泥脱水时,在满足泥饼干度要求和上清液质量要求情况下,继
续增加絮凝剂的使用量是完全没有必要的,也是现场造成絮凝剂浪费的主要原
4
因。
另外,随着絮凝剂用量的增加,上清液质量更好,但是,很多情况下过分
追求上清液质量而多投加絮凝剂是得不偿失的,仅仅多增加了数个百分点的污
泥回收率而消耗了更多的絮凝剂消耗是划不来的(就好像花费了
元购买了
5
元的商品)。
只要将上清液固含量控制在某一指标范围内即可。
在一般情况下,设备能够适合的污泥浓度有一定的范围要求,污泥浓度过
低或过高均会消耗更多的絮凝剂。
在设备正常运转的污泥浓度情况下,絮凝剂
的用量和待处理污泥的固含量近似成正比例关系,所以,在一定污泥流量的情
况下,絮凝剂的投加量要根据污泥的浓度进行调整,很多时候,由于污泥浓度
发生变化,而絮凝剂投加量没有及时调整而使现场运行表现不佳或产生药耗增
加。
若污泥浓度增加了而絮凝剂投加量并没有增加就会影响了处理效果,会表
现出泥饼干度降低,上清液浑浊;
反之,若污泥浓度降低了,絮凝剂投加量没
有降低就形成了絮凝剂的浪费,而处理效果增加并不明显。
另外,若絮凝剂溶解状况不好导致实际用量不足或絮凝剂配置浓度过低使
药液有效成分供应不足,则难以形成相应干度的泥饼,影响上清液质量;
而絮
凝剂浓度太大,絮凝剂高分子链上的活性基团则会由于相互屏蔽、包裹而使有
效成分难以充分发挥功效,从而造成药剂的浪费;
由于絮凝剂投加量过量较多,
絮凝体的再分散作用也会破坏絮体稳定性,絮凝效果同样不好。
絮凝剂用量太大,不仅
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 污水处理 厂卧螺 离心机 运行 操作 技术