数控工艺编程基础知识.docx
- 文档编号:11460485
- 上传时间:2023-03-01
- 格式:DOCX
- 页数:56
- 大小:994.08KB
数控工艺编程基础知识.docx
《数控工艺编程基础知识.docx》由会员分享,可在线阅读,更多相关《数控工艺编程基础知识.docx(56页珍藏版)》请在冰豆网上搜索。
数控工艺编程基础知识
《数控加工工艺与编程》电子教材
项目一:
数控加工工艺与编程基础知识
加工如图所示的零件,试分析此零件的结构是否适合于数控加工?
加工部分有外圆、螺纹和退刀槽,试分析用什么样的车刀加工此工件?
由图可知,φ45.5的轴段精度要求较高,试分析采用什么样的加工方法和加工顺序来保证此加工精度?
任务一:
数控加工工艺编制
第1步:
零件结构工艺分析、毛坯及加工定位基准的确定
一、零件图分析
1、识图的方法与步骤
读零件图是通过对零件图进行分析和综合的过程,为了研究零件图的设计合理性、分析加工工艺性、提高和改进产品质量打下基础。
读图步骤如下:
(1)概括了解首先看标题栏,了解零件图的名称、材料、比例,并浏览全图,对零件有一个全面的认识,根据有关的专业知识,可以分析零件的用途及结构特点。
(2)分析视图根据视图布局,首先找出主视图,围绕主视图,分析其他视图的配备情况,重点看清各种视图、刨面图,包括刨切方法、刨切位置、刨切目的几彼此之间的投影关系。
(3)形体分析利用形体分析法将零件图按功能分解为几个较大部分,如工作部分、连接部分、安装部分、加强和支撑部分。
在此基础上,仔细分析每个结构的局部细小结构、形状。
最后,想象出零件的完整结构形状。
(4)尺寸分析根据零件图类别及整体结构,分析长、宽、高各方向上的尺寸基准,搞清哪些是主要基准和主要尺寸,以及尺寸标注的形式,找出各简单的定形尺寸和定位尺寸。
(5)分析技术要求根据标注的尺寸公差、形位公差、表面粗糙度及其他技术要求,明确主要加工尺寸和加工表面,以便采用合理的工艺方法予以保证。
2、零件图的读取
(1)概括了解此零件为阶梯轴,材料为45#钢,采用1:
1比例。
共有4个轴段,需要加工外圆、切槽、螺纹。
(2)分析试图本阶梯轴结构、形状简单,没有需要进一步表达的部位,故采用一个主视图将结构完全表达。
(3)尺寸分析从图纸上可以看出,径向尺寸基准为中心线,尺寸以中心线标注,轴向尺寸基准为右端面,φ45.5和φ50的轴段定位基准都是右端面,基准比较统一。
尺寸标注比较齐全,没有遗漏。
φ45.5的轴段尺寸精度和表面粗糙度要求较高,可知此轴段为配合轴段。
M36的螺纹导程为2mm,查表可知螺纹小径为33.853mm,螺纹和槽宽总长有长度要求。
(4)直径为φ45.5mm轴段,直径公差为0.042mm,公差等级为IT8级,表面粗糙度为1.6
;螺纹和槽宽轴段总长长度要求34mm,公差为0.3mm,公差等级为IT13,原角半径R2mm,工件没有形状公差,没有相互位置公差要求。
二、工件的结构工艺性分析
此工件需要切削螺纹,因此必须要增加退刀槽,退刀槽宽度不小于1.2倍螺距,深度超过丝底尺寸, 其作用:
1、便于车削螺纹退刀,不伤及工件其他尺寸;2、使螺纹上满扣。
此工件槽宽为4mm大于螺纹导程1.2×2mm;退刀槽的深度2mm大于螺纹牙高;轴的未注圆角R2mm,比较统一,加工过程中可用同一车刀加工所有圆角,减少了换刀次数。
因此此轴的加工工艺性较好。
三、确定毛坯
1、钢的牌号和分类
工件的材料为45钢,为中碳钢含碳量为0.45%,具有较好的强度、韧性和硬度。
经过调质处理可以获得较高的强度和韧性等综合力学性能,经过淬火后再回火,表面硬度可达45~52HRC。
2、毛坯的确定方法
确定毛坯包括选择毛坯类型及制造方法、确定毛坯精度。
机加工的工序数量、材料消耗和劳动量,很大程度上与毛坯有关。
毛坯的形状越接近成品零件,即毛坯的精度越高,则零件的机械加工劳动量越少,材料消耗越少,机械加工的生产率可提高。
但是毛坯的制造费用提高了。
因此确定毛坯要从机械加工和毛坯制造两个方面来考虑,以求得最佳效果。
毛坯类型有铸、锻、压制、冲压、焊接、型材和板材等。
需考虑因素:
1)零件的力学性能当零件的材料选定后,毛坯的类型就大致确定了。
例如,材料是铸铁,就选用铸造毛坯,材料是钢材,且力学性能要求较高时,可选锻件;当力学性能要求较低时,可选型材和铸钢。
2)零件的形状和尺寸形状复杂的毛坯。
常采用铸造的方法。
薄壁零件不可用砂型铸造,尺寸大的铸件宜用砂型铸造,中小零件可用较先进的铸造方法,常见的一般用途的钢质阶梯轴零件,如各台阶直径相差不大,可用棒料;如台阶的直径相差较大,宜用锻件。
尺寸大的零件,因受设备的限制一般用自有锻,中小型零件可选用模锻。
形状复杂的钢质工件不宜用自有锻。
3)生产类型大量生产应选精度和生产率都比较高的毛坯制造方法,用于毛坯制造的昂贵费用可由材料消耗的减少和机加工费用的降低来补偿。
如铸造应选用金属模机造型或精密铸造,锻件应采用模锻、冷轧、和冷拉型材;单件小批生产则应采用木模。
4)具体生产条件确定毛坯必须结合具体的生产条件,如现场毛坯制造的实际水平和能力、外协的可能性。
5)充分考虑新工艺、新技术、新材料的可能性为节省材料和能源,随着毛坯制造项专业化生产的发展,目前新工艺、新技术、新材料发展很快,经济效果显著。
3、此工件加工数量较大,各轴段直径相差不大,力学性能要求不高,材料为45钢,因此毛坯选择棒料,零件最大直径为φ50,尺寸精度较低,零件长度为59mm,加上夹持部分,毛坯选择φ55mm*80mm的棒料。
四、基准的定义与选择
1、基准的定义
基准就是依据,是用来确定生产对象上几何要素间的几何关系所依据的那些点、线、面。
在设计、加工、检验、装配机器零件和部件时,必须选择一些点、线、面,根据它们来确定其它点、线、面的尺寸和位置,那些作为依据的点、线、面就叫做基准。
基准根据起其功用不同,分为两大类:
(1)设计基准设计基准是在设计图样上所采用的基准。
设计基准又可细分为:
尺寸设计基准与位置精度设计基准。
(2)工艺基准工艺基准是在工艺过程中所采用的基准。
按其在工艺过程中用途的不同,工艺基准又可分为四类:
1)工序基准指的是在工序图上用来确定本工序所加工后的尺寸、形状、位置的基准。
相应地,用来确定被加工表面位置的尺寸称为工序尺寸。
2)定位基准在加工中用作定位的基准。
定位基准按使用情况可分为两种:
定位粗基准:
用未加工的表面作定位基准。
定位精基准:
用已加工表面作为定位基准。
定位精基准按使用情况又可分为两种:
基本精基准:
加工时是定位基准,装配时又是装配基准。
如,齿轮的内孔。
辅助精基准:
当零件上没有合适的表面作定位基准时,为便于安装和易于获得所需的加工精度,在工件上特意做出专门供定位用的表面。
仅在加工中起作用,在装配中不起作用。
如,轴类零件加工中的中心孔就是辅助精基准。
有关定位基准的选择问题将在下章介绍。
(3)测(度)量基准即测量时所采用的基准。
(4)装配基准:
即装配时用来确定零、部件在产品中的相对位置所采用的基准。
2、工件基准的分析
此工件的径向尺寸设计基准为中心线,轴向尺寸设计基准为右端面。
采用三爪自定位卡盘装夹,定位基面为外圆,可认为定位基准为中心线,满足基准重合原则。
第2步:
拟定加工工艺路线、制定工序卡片
一、加工方法的选择
机械零件的结构形状是多种多样的,但他们都是由平面、外圆柱面、内圆柱面或曲面等基本表面所组成。
每一种表面都有多种加工方法,具体选择时应根据;零件的加工精度、表面粗糙度、材料结构形状尺寸及生产类型等,选用相应的加工方法和加工方案。
1、外圆表面加工方法的选择外圆表面加工方法主要是车削和磨削。
当表面粗糙度较小时,还要经光整加工。
表1-1外圆加工工序安排
序号
加工方法
经济精度
(公差等级表示)
经济粗糙度值
Ra/
适用范围
1
粗车
IT11-13
12.5-50
适用于淬火钢以外的各种金属
2
粗车-半精车
IT8-10
3.2-6.3
3
粗车-半精车-精车
IT7-8
1.6-3.2
4
粗车-半精车-精车-滚压(或抛光)
IT7-8
0.25-0.2
5
粗车-半精车-精车-细车
IT6-7
0.2-0.63
6
粗车-半精车-磨削
IT7-8
0.4-0.8
主要用于淬火钢,也可用于为淬火钢,但不宜加工有色金属。
7
粗车-半精车-粗磨-精磨
IT6-7
0.1-0.4
8
粗车-半精车-粗磨-精磨-超精加工
IT15
0.012-0.1
9
粗车-半精车-精车-精细车
IT6-7
0.025-0.4
主要用于要求较高的有色金属。
10
粗车-半精车-粗磨-精磨-超精磨
IT5以上
0.006-0..25
极高精度的外圆加工
11
粗车-半精车-精车-粗磨-精磨-研磨
IT5以上
0.006-0.1
1)最终工序为车削的加工方案,适用于除淬火钢以外的各种金属。
2)最终工序为磨车削的加工方案,适用于淬火钢、未淬火钢和铸铁,不适于有色金属,因韧性大,磨削时易堵砂轮。
另淬火钢和铸铁硬度高,车削加工困难,不能采用车削。
2、该工件加工方法的确定
该工件公差等级为IT8级,表面粗糙度为1.6
,从表1-1中可以查出此工件的加工方法为:
粗加工、半精加工和精加工。
二、确定装夹方案
1、夹具的选择原则:
由于夹具确定了零件在机床坐标系中的位置,即加工原点的位置,因而首先要求夹具能保证零件在机床坐标系中的正确方向,同时协调零件与机床坐标系的尺寸。
除此之外,主要考虑下列几点:
(1)当零件加工批量小时,尽量采用组合夹具、可调夹具及其他通用夹具;
(2)当小批量或成批生产时才考虑专用夹具,但应力求结构简单;
(3)夹具要开敞,其定位、加紧元件不能影响加工中的走刀;
(4)装卸零件要方便可靠,以缩短准备时间,有条件时,批量大的零件应采用气动或液压夹具、多工位夹具。
2、数控车床常用夹具
(1)圆周定位夹具
在车床上大都使用工件或毛坯的外圆定位。
1)三爪卡盘:
最大的优点是可以自动定心,夹持范围大,但定心存在误差,不适合与同轴度高的工件的二次装夹。
三爪卡盘有机械式和液压式两种。
液压卡盘装夹迅速、方便,但夹持范围变化小,尺寸变化大时需重新调整卡盘位置。
2)软爪:
加工同轴度要求较高的工件二次装夹时常常使用软爪。
3)弹簧夹套:
定心精度高,装夹工件快捷方便,常用于工件精加工的外援定位。
特别适用于尺寸精度较高、表面质量较好的冷拔圆棒料,若配以自动送料器,可实现自动上料。
弹簧夹套夹持工件的内孔是标准系列,并非任意直径。
4)四爪卡盘:
适用于加工精度不高、偏心距较小、零件长度较短的工件。
(2)中心线定位夹具
两顶尖装夹:
对于精度要求较高,大小和加工数量不同的轴类零件,常用以下装夹方法。
(3)圆周中心线定位
一顶一夹安装:
(4)数控铣床的常用夹具:
平口钳。
3、夹具的选择:
根据此工件的基准,毛坯为φ55mm的实心轴,有足够的夹持长度和加工余量,便于装夹。
采用三爪卡盘夹紧,能自动定心,工件装夹后一般不需找正。
以毛坯表面为定位基准面,装夹时注意跳动不能太大。
工件伸出卡盘69-89mm,保证59mm车削长度,同时便于切断刀进行切断加工。
三、数控机床的选择
1、数控机床的种类
(1)按控制系统运动方式分类
按控制方式分,最常用的数控机床可分为以下三类:
1)开环数控机床 这类数控机床采用开环进给伺服系统。
2)闭环数控机床 这类机床的位置检测装置安装在进给系统末段端的执行部件上,该位置检测装置可实测进给系统的位移量或位置。
3)半闭环数控机床 这类机床的检测元件装在驱动电机或传动丝杠的端部,可间接测量执行部件的实际位置或位移。
(2)按控制系统功能水平分
按控制系统的功能水平,可以把数控机床分为经济型、普及型、高级型三类,主要由技术参数、功能指标、关键部件的功能水平来决定。
这些指标具体包括CPU性能、分辨率、进给速度、伺服性能、通信功能、联动轴数等。
(3)按数控机床的运动轨迹分类
按照能够控制的刀具与工件间相对运动的轨迹,可将数控机床分为点位控制数控机床、点位直线控制数控机床、轮廓控制数控机床等。
现分述如下:
1)点位控制数控机床。
2)点位直线控制数控机床。
3)轮廓控制数控机床。
2、机床的选择
此零件加工精度为IT8级,故选择普及型数控车床。
二、工件基准的分析
此工件的径向尺寸设计基准为中心线,轴向尺寸设计基准为右端面。
采用三爪卡盘外圆定位,定位基准为中心线,满足基准重合原则。
四、刀具的选择
数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。
刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。
车刀的分类有多种方法。
根据刀具结构可分为:
1、焊接式车刀:
将硬质合金刀片用焊接的方法固定在刀体上。
2、机夹式车刀:
采用机械结构将刀片和刀体(可转位刀头)连接在一起。
特殊型式,如复合式刀具、减震式刀具等。
车刀类型:
1、900硬质合金右偏刀:
可加工外圆、端面及台阶,加工异型凹面时,为防止副后角与工件轮廓干涉,可用作图法分析检验曲面最小角度,副偏角不宜过小,同时尽量增强刀尖强度,大于不发生干涉的极限角度值60~80为宜。
除因考虑型面,硬质合金车刀在刃磨时,副后角需要去较大的角度外,其他几何参数与普通机床基本相同。
在数控机床上加工复杂、高精度的零件时一般选用可转位车刀,刀具几何参数标准,加工过程中的刀具角度变化小,表面粗糙度稳定,刀尖圆弧可选择,便于进行半径补偿,能获得较高的尺寸精度。
2、尖形车刀:
尖形车刀是以直线形切削刃为特征的车刀。
这类车刀的刀尖有直线形的主副切削刃构成,都可以参加切削,在粗加工凹形面时可来回进行加工,使走刀路线最短。
尖形车刀几何参数的选择和与普通车削时基本相同,但应接合数控加工的特点进行全面的考虑,并兼顾车刀刀尖的强度,一般可与600硬质合金螺纹刀兼用,缺点不能加工有台阶的零件。
3、圆弧车刀:
圆弧车刀是以一圆弧或轮廓度误差很小的圆弧形切削刃为特征的车刀。
该车刀圆弧刃每一点都是圆弧车刀的刀尖点,因此刀位点不在圆弧上,而在该圆弧的圆心上,车刀圆弧半径理论上与被加工工件的形状无关,只需按零件轮廓编程后进行半径补偿。
可以用于车削外圆特别适合于车削各种光滑连接的成形面。
他具有宽刃切削性质,能使精车余量保持均匀而改善切削性能。
选择刀具半径时考虑两点:
第一车刀切削刃的圆弧半径应小于零件凹形轮廓上的最小曲率半径,以免发生干涉;第二,该半径不宜选择太小,否则不但制困难,还会因刀尖强度太弱或刀体散热能力差而导致车刀损坏。
4、切槽刀:
切槽刀的选择主要注意两个方面:
一是切槽刀的宽度要适宜,小于等于槽宽;二是切削刃长度L要大于槽深。
5、成型车刀:
又称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形状和尺寸决定。
此工件需要加工的内容为外圆、端面、槽和螺纹,因此需要选择外圆车刀、切槽刀、600螺纹车刀。
五、切削用量
1.切削速度:
切削速度的大小是用工件外圆上的线速度来表示的,记作νc,单位m/s(或m/min)
(2-1)
式中n––––主轴转速,r/s(或r/min)
d––––工件最大外圆直径mm,如为钻削、铣削,则d为刀具最大直径mm。
切削速度Vc方向,即外圆外线速度的方向。
2.进给量进给量有两种表述形式。
进给速度表示,记作νƒ,单位mm/min,即在单位时间内,刀具相对于工件在进给方向上的位移量;
生产中常用每转进给量来表示,记作ƒ,单位为mm/r,即是工件每转一转,刀具相对于工件在进给方向上的位移量;
当刀具齿数z>1时(如:
钻削),每个刀齿相对于工件在进给方向上的位移量,即每齿进给量,以ƒz表示,单位为mm/z。
上述三种表示法可写成如下形式
νƒ=ƒn=ƒzzn
3.背吃刀量当刀具不能一次吃刀就能切掉工件上的金属层时,还需由操作者在一次进给后再沿半径方向完成吃刀运动,习惯上称每次吃刀的数量为背吃刀量,以ap表示,单位为mm;此时它是间歇进行的,故可不看成是运动。
但当由机床进刀机构自动完成吃刀运动时,就应看成是一种辅助运动了(外圆磨削、平面磨削),其大小为
(2-2)
式中dw––––待加工表面直径,mm;
dm––––已加工表面直径,mm。
切削用量的选择如表
六、机械加工工艺的基本概念
1、机械加工工艺过程的组成
机械加工工艺过程一般由一个或若干个工序组成,而工序又分为安装、工位、工步和进给,毛坯通过各工序变为合格的零件。
(1)工序工序是工艺过程的基本单元,指一个(或一组)工人,在一个工作地点(如一台设备)对一个(或同时对几个)工件所连续完成的那一部分工艺过程。
划分工序的主要依据是工人、工件、工作地点(设备)三不变以及该工序的工艺过程是否连续。
(2)安装机械加工中,使工件在机床或夹具中占据某一正确位置并被夹紧的过程,称为装夹。
在一道工序中,有时需要对工件进行多次装夹。
工件经一次装夹后所完成的那一部分工序称为安装。
(3)工位工件在一次安装下相对于机床或刀具每占据一个加工位置所完成的那部分工艺过程称为工位。
(4)工步工步指加工表面、加工刀具和切削用量中切削速度和进给量不变的情况下所完成的那部分工序内容,三者有任一改变,即为另一工步。
(5)进给在一个工步内,若被加工表面要切除的金属层很厚,需分几次切削,则每一次切削称为一次进给。
如车削螺纹时,在车螺纹的工步下就需要多次进给。
以上是将机械加工工艺过程进行分解,一个零件的加工过程由一个或若干个工序组成,每个工序则由安装、工位、工步构成,工步由进给构成。
2、工件工艺分析
此工件结构简单,分为粗加工、半精加工和精加工,一个工序,一次安装,一个工位,共分为4个工步。
见表1-2。
表1-2刀具及切削参数表
工步号
工步内容
刀具号
刀具类型
切削用量
备注
主轴转速
r/min
进给速度
mm/r
1
下料
2
平端面
T01
930外圆车刀
1500
0.1
3
粗车外圆台阶
T01
930外圆车刀
800
0.2
4
半精车外圆
T02
900外圆车刀
1000
0.2
5
精车外圆台阶
T02
900外圆车刀
1200
0.1
6
切槽
T03
切槽刀(刀宽小于4mm)
500
7
加工螺纹
T04
600螺纹车刀
350
2
8
切断(保证长42mm)
T03
切槽刀
600
手动
七、填写工件安装和原点设定卡和工序卡
工件安装和原点设定卡片
零件图号
数控加工工件安装和原点设定卡片
工序号
1
零件名称
阶梯轴
装夹次数
1
编制(日期) 审核(日期)
批准(日期)
第 页
1
三爪卡盘
GS53-61
共 页
序号
夹具名称
夹具图号
数控加工工序卡片
单位
数控加工工序卡片
产品名称或代号
零件名称
零件图号
工序简图
车间
使用设备
工艺序号
程序编号
1
0001
夹具名称
夹具编号
三爪卡盘
GS53-61
工步号
工步作业内容
加工面
刀
具
号
刀补量
主轴转速r/min
进给速度mm/r
背
吃
刀
量
备注
1
下料
2
平端面
Φ38右端面
T01
0
〈1500
0.1
3
粗车外圆台阶
外圆面
T01
0
800
0.2
4
4
半精车
外圆面
T02
0
1000
0.1
0.7
5
精车外圆台阶
外圆面
T02
0
1200
0.1
0.3
6
切槽
槽
T3
0
500
7
加工螺纹
T03
T04
0
350
2
小于0.8
8
切断(保证长42mm)
Φ50左端面
T02
0
600
0.05
编制
审核
批准
年月日
共页
第页
第3步:
确定加工余量、工序尺寸和公差以及工艺尺寸链计算
加工余量是指加工过程中,所切去的金属层的厚度。
余量有工序余量和加工总余量之分。
工序余量是相邻两工序尺寸之差;加工总余量是毛坯尺寸与零件图的设计尺寸之差,它等于各工序余量之和。
基准重合时工序尺寸及其公差的确定方法
每到工序的工序尺寸都不相同,它们是逐步向设计尺寸接近的。
为了保证零件的设计要求,需要规定各工序的工序尺寸及其公差。
工序余量确定后,就可以计算工序尺寸,工序尺寸公差的确定,则要依据工序基准或定位基准与设计基准是否重合,采用不同的设计方法。
这里指工序基准或定位基准与设计基准重合,表面多次加工时,工序尺寸及其公差的计算。
计算顺序为:
1)确定毛坯总余量和工序余量;
2)确定工序公差;最后一道工序尺寸公差等于零件图上设计尺寸公差,其余工序尺寸公差都按各各工序的经济精度确定。
3)计算工序余量的基本尺寸:
从工件的设计尺寸开始向前推算,直到毛坯尺寸。
最终工序尺寸等于零件图上的基本尺寸,其余工序基本尺寸等于后道工序基本尺寸加上或减去后道工序余量。
4)标注工序尺寸公差:
最终工序公差按零件图上设计尺寸标注,中间工序尺寸公差按“入体原则”标注,毛坯尺寸公差按对称公差标注。
例:
某车床主轴主轴孔的设计尺寸为
mm,表面粗糙度Ra值为0.8μm,毛坯为铸铁。
已知加工工艺过程为粗镗-半精镗-精镗-浮动镗。
查表修正法或经验估计法确定毛坯和各工序余量如表第二列,按照各工序能达到的经济精度查表确定各工序尺寸公差分别如表第3列,最后由后工序向前逐个计算工序尺寸如下表所示。
工序名称
工序基本尺寸
工序的经济精度
工序尺寸
工序尺寸及其公差和Ra
浮动镗
0.1
JS(±0.011)
100
100(±0.011)Ra=0.8
精镗
0.5
H7(
)
100-0.1=99.9
99.9(
)Ra=1.6
半精镗
2.4
H10(
)
99.9-0.5=99.4
99.4(
)Ra=3.2
粗镗
5
H13(
)
99.4-2.4=97.0
97(
)Ra=6.4
毛坯孔
8
±1.3
97-5=92.0
92±1.3
2、工序尺寸及其公差
图纸轴段直径设计尺寸
,表面粗糙度1.6
,毛坯为型材。
工艺过程为粗车-半精车-精车。
用查表修正法或经验估计法确定毛坯总余量和各工序余量,其中粗铣余量由毛坯总余量减去其余工序余量确定,各工序的基本余量如下:
工序名称
工序基本尺寸
工序的经济精度
工序尺寸
工序尺寸及其公差和Ra
精车
0.3
(
)
44.5
44.5
Ra=1.6
半精车
0.7
H9(
)
44.5+0.3=44.8
44.8
Ra=6.3
粗车
2
H12(
)
44.8+0.7=45.5
45.5
Ra=12.5
第4步:
工艺编制课堂练习
任务二:
数控编程
第1步:
数控编程基础知识
一、机床坐标系的建立
1、机床坐标系的确定原则
(1)刀具相对于静止工件运动的原则
在机床上,我们始终认为工件静止,而刀具是运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数控 工艺 编程 基础知识