七年级下数学平行线习题附详细答案Word格式文档下载.docx
- 文档编号:22060613
- 上传时间:2023-02-02
- 格式:DOCX
- 页数:12
- 大小:109.95KB
七年级下数学平行线习题附详细答案Word格式文档下载.docx
《七年级下数学平行线习题附详细答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《七年级下数学平行线习题附详细答案Word格式文档下载.docx(12页珍藏版)》请在冰豆网上搜索。
C.80°
D.90°
7.如图,直线AB,CD,EF相交于点O,那么∠COF的一个邻补角是〔 〕
A.∠BOFB.∠DOFC.∠AOED.∠DOE
8.如下图,AB与CD交于点O,且AC⊥AB,BD⊥AB,以下说法不正确的选项是〔 〕
A.∠1=∠2B.∠3与∠1互补C.∠2与∠3互补D.AB⊥CD
二、填空题〔共9小题〕
9.如图,直线AB,CD相交于点O,假设∠BOD=
∠BOD+18°
,那么∠AOD= .
10.如下图,A0⊥OB,垂足为O,∠AOC=120°
,射线OD平分∠AOB,那么∠COD= .
11.同一个平面内5条直线交于一点,那么一共有 对对顶角.
12.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°
,那么∠AOC= ,∠COB= .
13.直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF,假设∠AOF=140°
,那么∠BOD的度数为 .
14.如图,直线a,b相交,∠2+∠3=100°
,那么∠1= 度.
15.如图,直线AB,CD相交于点O,OE平分∠BOD,∠COB与它的邻补角的差为40°
,那么∠AOE= 度.
16.如下图,直线a,b,c两两相交,∠1=60°
,∠2=
∠4,那么∠3= 度,∠5= 度.
17.如下图,AB、CD相交于点O.OB平分∠DOE,假设∠DOE=63°
12′,那么∠AOC的度数是 .
参考答案与试题解析
【分析】根据对顶角的定义,每一个顶点处有两对对顶角解答.
【解答】解:
如图,一个交点处有2对对顶角,
所以,共有3×
2=6对对顶角.
应选D.
【点评】此题考查了对顶角的定义,熟记概念是解题的关键,作出图形更形象直观.
【分析】根据对顶角相等的性质解答.
由图可知,∠AOC与∠BOD是对顶角,
所以,∠AOC=∠BOD.
应选A.
【点评】此题主要考查了对顶角相等的性质,比拟简单,准确识图判断出∠AOC和∠BOD是对顶角是解题的关键.
【分析】根据对顶角的定义与性质对各选项分析判断后利用排除法求解.
A、对顶角必相等正确,故本选项正确;
B、相等的角是对顶角,错误,如角平分线分成两个相等的角,故本选项错误;
C、不是对顶角的角不相等,错误,故本选项错误;
D、有公共顶点的角是对顶角,错误,故本选项错误.
【点评】此题考查了对顶角的定义与对顶角相等的性质,是根底题.
【分析】根据角平分线的定义求出∠AOD的度数,根据邻补角的性质计算即可.
∵OE平分∠AOD,∠AOE=65°
,
∴∠AOD=2∠AOE=130°
∴∠AOC=180°
﹣∠AOD=50°
.
应选:
C.
【点评】此题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°
是解题的关键.
【分析】根据点到直线的距离的概念:
直线外一点到这条直线的垂线段的长度即为该点到这条直线的距离作答.
点A到直线CD的距离就是过点A作直线CD的垂线,其垂线段AD的长度可表示距离.应选D.
【点评】熟练掌握点到直线的距离的概念是解题的关键.
【分析】可根据,先求∠AOC,∠COE的度数,再用平角的定义求解.
∵OA平分∠COD,∠COD=80°
∴∠AOC=40°
∵OC⊥OE于点O,
∴∠COE=90°
∴∠BOE=180°
﹣∠AOC﹣∠COE=180°
﹣40°
﹣90°
=50°
应选B.
【点评】此题主要考查角平分线和垂线的定义的应用.
【分析】根据邻补角的定义找出即可.
∠COF的一个邻补角是∠COE,∠DOF.
B.
【点评】此题考查了邻补角的定义,是根底题,熟记概念是解题的关键.
【分析】根据对顶角、邻补角的定义,垂线的定义对各选项分析判断即可得解.
∠1=∠2〔对顶角相等〕,
∠3与∠1互补,∠2与∠3互补正确;
AB⊥CD错误,
所以说法不正确的选项是D.
【点评】此题考查了垂线的定义,对顶角,邻补角的定义,是根底题,熟记概念是解题的关键.
二、填空题〔共9小题〕
,那么∠AOD= 144°
.
【分析】先根据∠BOD=
,得出∠BOD=36°
,再根据邻补角即可解答.
∵∠BOD=
∴∠BOD=36°
∴∠AOD=180°
﹣∠BOD=180°
﹣36°
=144°
故答案为:
144°
【点评】此题考查了邻补角,解决此题的关键是熟记邻补角的定义.
,射线OD平分∠AOB,那么∠COD= 165°
【分析】根据图中的垂线得到∠AOB=90°
.然后由图中的角平分线的定义和角与角间的和差关系即可求得∠COD=165°
如图,∵A0⊥OB,
∴∠AOB=90°
∵射线OD平分∠AOB,
∴∠AOD=
∠AOB=45°
∴∠COD=∠AOC+∠AOD=120°
+45°
=165°
故答案是:
165°
【点评】此题利用垂直的定义,角平分线的性质计算,要注意领会由垂直得直角这一要点.
11.同一个平面内5条直线交于一点,那么一共有 20 对对顶角.
【分析】利用公式n〔n﹣1〕代入数据进行计算即可求解.
∵n〔n﹣1〕=5×
〔5﹣1〕=20,
∴一共有20对对顶角.
20.
【点评】此题考查了对顶角的计算,熟记公式是解题的关键.
,那么∠AOC= 64°
,∠COB= 116°
【分析】根据垂直定义求出∠BOE,即可求出∠BOD,根据对顶角相等求出∠AOC,根据邻补角求出∠BOC.
∵OE⊥AB,
∴∠EOB=90°
∵∠EOD=26°
∴∠AOC=∠BOD=90°
﹣26°
=64°
∴∠BOC=180°
﹣∠AOC=180°
﹣64°
=116°
64°
,116°
【点评】此题考查了垂直,对顶角,邻补角的应用,主要考查学生的计算能力.
,那么∠BOD的度数为 20°
【分析】先由角平分线的定义求出∠AOC=70°
,再根据垂直的定义得出∠AOB=90°
,然后利用平角的定义即可求出∠BOD的度数.
∵OC平分∠AOF,∠AOF=140°
∴∠AOC=70°
∵OA⊥OB,
∴∠BOD=180°
﹣∠AOB﹣∠AOC=180°
﹣70°
=20°
故答案为20°
【点评】此题考查了角平分线的定义,垂直的定义,平角的定义,根据平角的定义得出∠BOD=180°
﹣∠AOB﹣∠AOC是解题的关键.
,那么∠1= 130 度.
【分析】根据对顶角相等可得∠2=∠3,然后求出∠2的度数,再根据邻补角的和等于180°
列式进行计算即可得解.
∵∠2+∠3=100°
,∠2=∠3〔对顶角相等〕,
∴∠2=
×
100°
∴∠1=180°
﹣∠2=180°
﹣50°
=130°
130.
【点评】此题主要考查了对顶角相等,邻补角的和等于180°
的性质,熟记性质并求出∠2的度数是解题的关键.
,那么∠AOE= 145 度.
【分析】直线AB,CD相交于点O,由∠COB与∠DOB互为邻补角,即∠COB+∠DOB=180°
及∠COB﹣∠DOB=40°
,可求∠BOD,又OE平分∠BOD,可求∠BOE,利用∠AOE与∠BOE的互补关系求∠AOE.
∵直线AB,CD相交于点O,∠COB与∠DOB互为邻补角,
∴∠COB+∠DOB=180°
,①
∠COB﹣∠DOB=40°
,②
由①、②解得∠DOB=70°
∵OE平分∠BOD,
∴∠BOE=∠DOB÷
2=70°
÷
2=35°
∴∠AOE=180°
﹣∠BOE=180°
﹣35°
=145°
145.
【点评】此题考查了利用互为邻补角的性质,即互为邻补角的两角之和是180°
,以及角平分线的性质解题.
∠4,那么∠3= 120 度,∠5= 90 度.
【分析】∠1=60°
,∠2与∠1是对顶角及∠2=
∠4,可求∠4;
∠3与∠1是邻补角,可求∠3;
∠5与∠4互为邻补角,可求∠5.
∵∠1与∠3是邻补角,∠1=60°
∴∠3=180°
﹣∠1=180°
﹣60°
=120°
;
又∵∠1与∠2是对顶角,∴∠2=∠1=60°
把∠2=60°
代入∠2=
∠4中,得∠4=90°
∵∠4与∠5是邻补角,∴∠5=180°
﹣∠4=90°
【点评】此题主要考查邻补角、对顶角定义,能够找出题中角的位置关系是解题的关键.
12′,那么∠AOC的度数是 31°
36′ .
【分析】首先根据角平分线的性质可得∠BOD=
∠DOE,再根据对顶角相等可得∠AOC=∠BOD.
∵OB平分∠DOE,
∴∠BOD=
∠DOE,
∵∠DOE=63°
12′,
∴∠BOD=31°
36′,
∴∠AOC=∠BOD=31°
31°
36′.
【点评】此题主要考查了对顶角和角平分线的性质,关键是掌握对顶角相等.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学 平行线 习题 详细 答案