NURBS曲线曲面重构的方法_精品文档资料下载.pdf
- 文档编号:16088711
- 上传时间:2022-11-19
- 格式:PDF
- 页数:3
- 大小:250.65KB
NURBS曲线曲面重构的方法_精品文档资料下载.pdf
《NURBS曲线曲面重构的方法_精品文档资料下载.pdf》由会员分享,可在线阅读,更多相关《NURBS曲线曲面重构的方法_精品文档资料下载.pdf(3页珍藏版)》请在冰豆网上搜索。
方法【Abstract】Denotingclzr13esandsu口CacewithpolynomialisusedwidelyinCADCAMSinceitsrichgeometricpropertiesallowittorepresentbothanalyticshapesandfree一枷curvesandsu萌ace,ISOdefinednonunmrationalBsplines(NURBS)asindustrystandardforrepresentinggeometryin1991TheprimeattentionisthereconstructionmethodofNURBSell,rYesandsuffaceinthepaperKeywords:
Surfacereconstruction;
NonuniformrationalBsplines(NURBS);
Method中图分类号:
TP391文献标识码:
A:
1引言反求工程是现代先进制造技术AMT(AdvancedManufactur-ingTechnology)的重要组成内容之一,它是实现产品的快速设计和敏捷制造的重要手段。
现代制造工业面对的是一个结构复杂、品种多、批量小、生产周期短和13益集成化的生产环境。
采用反求工程技术,不但可以极大的缩短产品开发周期,更重要的是可以快速赶上或超过世界先进生产技术水平。
反求工程的实际过程与传统的设计过程是完全不同的。
传统设计过程是在市场调研的基础上,根据功能和用途来设计产品,得到图纸或CAD模型,经检查满意都制造出产品来。
而反求工程是从一个存在的零件或原型人手,首先对其进行数字化处理,然后是构造CAD模型。
CAD模型经过检查满意后,根据需要可输出图纸,最后制造产品。
来稿日期:
200505082相关的基础理论和术语21曲线曲面的函数表示一个三维物体是由曲线和曲面组成的。
为了正确地对物体建模,必须找到有效地方法来表示曲线和曲面。
曲线和曲面均有参数表示和非参数表示之分,在非参数表示中又分为显式表示和隐式表示。
211显式表示对于一条平面曲线,显式的非参数方程一般式是:
y=f(茗);
一条直线方程Y=k+b就是一个例子,在此方程中,每一个Y值只对应一个Y值,所以用显式方程不能表示封闭或多值曲线,例如不能用显式方程表示一个圆。
212隐式表示用隐式的非参数方程不受上述限制,其一般形式为:
厂(毛特征矩阵,方便地进行相似零部件设计与相似工艺设计,以提高设计效率和最大限度地利用已有的设计和工艺资源。
外码和内码的配套使用为实现企业信息化集成提供了有效途。
参考文献1章秉枢,李建明产品数据管理(PDM)技术北京:
清华大学出版社,20002陈小慧产品数据管理系统在我国的应用与发展现代制造工程2001,(9):
12一153朱树人,李伟琴PDM应用环境探讨系统工程与电子技术2000,22(7):
86894熊光能计算机集成制造系统的组成与实施北京:
清华人学出版社,1996115刘健PDM下机械产品零部件零部件分类管理系统的研究与应用山东入学硕士学位论文,200412:
2216李建明,童秉忠,许隆文产品数据管理技术的现状与发展计算机集成制造系统1998,(12):
32357L1ULiwenPartnershipintheSupplychainofenterprieeJComputerIntegratedManufacturingSystemsCIMS2001,7(8)27328许香穗,蔡建国成组技术北京:
机械工业出版社,1997109赵敏走近PDM计算机辅助设计与制造1999,(4):
912万方数据一138一韩庆瑶等:
NURBS曲线曲面重构的方法第3期y)=o;
它描述了变量之间的关系。
例如,函数以茹,Y)=妒+矿一1=0表示半径为1的一个圆。
但是所有非参数方程(无论是显式还是隐式)都是:
(1)-7坐标轴相关的;
(2)会出现斜率为无穷大的情况;
(3)对于非平面曲线,曲面难以用常系数的非参数化函数表示;
(4)不便于计算和编程。
为了解决这些问题,可考虑用参数方程表示曲线和雎面。
213参数表示在参数法里每一个变量都是一个独立参数的函数。
基于这种形式,一条曲线可以用独立变量u定义为C(u)=【茹(H),Y(u)】口曼usb用参数形式表示一个圆的前四分之一,我们可以写作C(“)=【COS(H),sin
(1)】0su叮r2也可以写作c(u)=。
并,南】o冬l1这表明一条曲线的参数表示不是唯一的。
22插值、逼近、拟合和光顺在研究和应用曲线、曲面时,插值、逼近、拟合和光顺等术语的含义必须弄清楚。
221插值插值是函数逼近的重要方法。
例如给定函数以茹)在区间口,b】中互异的n个点的值一矗)i=1,2,n,基于这个列表数据,寻找某一个函数9(茹)去逼近八名)。
若要求妒(髫)在船处与以筋)相等,就称这样的函数逼近问题为插值问题,称妒(茹)为,(茹)的插值函数,船称为插值节点,也就是说,妒(茹)在n个插值节点魁处与以兢)相等,而在别处就用妒(茹)近似的代替厂(名)。
222逼近上面讨论了已知型值点(插值点)的插值方法。
当型值点太多时,构造插值函数使其通过所有的型值点相当困难的,客观上看,由于过多的型值点也会有误差,也没有必要寻找一个插值函数通过所有的型值点,往往选择一个次数较低的函数,在某种意义上最佳逼近这些型值点。
逼近的方法很多,最常用的有最小二乘法。
假设已知一组型值点(粕yj)i=1,2,n,要求构造一个m(mn一1)次多项式Y=F(茗)逼近这些型值点。
衡量逼近程度常用的方法是取各点三偏差的平方和最小:
妒=艺【F(规)一弘】2公式
(1)或加权的方差土最小:
妒k艺dI【F(舰)一】2公式
(2)其中也是权因子。
I。
I223光顺光顺的通俗的含义是曲线的拐点不能太多,曲线拐来拐去,就会很不顺眼。
对于平面相对光顺的条件应是:
(j)具有二阶几何连续性(俨);
(2)不存在多余的拐点和奇异点;
(3)曲率变化相对较小。
224拟合拟合并不像上述的插值、逼近、光顺那样有完整的含义和数学表示,拟合是指在曲线、曲面的设计过程中,用插值或逼近方法使生成的曲线、曲面达到某些设计要求。
如在允许的范围内贴近原始的型值点或控制点序列:
如曲线、曲面看上去要“光滑”、“光顺”等等。
对曲线曲面而言。
光滑是指它们在切矢量上的连续性。
或更精确的要求是指曲率的连续性。
3NURBS方法的提出、定义及特点31NURBS方法的提出工业产品的形状大致可分为两类或由这两类组成:
一类是仅由初等解析曲面例如平面、圆柱面、圆锥面、球面、圆环面等组成。
大多数机械零件属于这一类。
可以用几何与机械制图完全清楚表达和传递所包含的全部形状信息。
第二类是不能由初等解析曲面组成,而以复杂方式自由的变化的曲线曲面,所谓tl由型曲面组成,例如飞机、汽车、船舶的外型零件。
显然,这后一类形状单纯用画法几何与机械制图是不能表达清楚的。
32NURBS方法的特点NURBS方法在CADCAM与计算机图形学领域获得越来越广泛的应用,这是因为,它具有下述优点:
即为标准解析形状也为自由型曲面的精确表示与设计提供了一个公共的数学形式,因此,一个统一的数据库就能存储这两类形状信息。
权因子的引入成为几何连续样条曲线曲面中形状参数的替代物。
计算稳定且速度相当的快。
NURBS有强有力的几何配套技术(包括插入节点、细分、消去、升阶、分裂等),能用于设计、分析与处理等各个环节。
NURBS在比例、旋转、平移、剪切以及平行和透视投影变换下是不变的。
然而,NURBS也还存在一些缺点需要额外的存储以定义传统的雎线和曲面。
权因子的不合适应用可能导致很坏的参数化,甚至毁掉后面的曲面结构。
某些基本算法例如反求衄线曲面上的参数值,存在数值不稳定问题。
4NURBS曲线曲面重构的整体插值法重构的方法有插值和逼近两种。
插值是指构建精确满足数据点的曲线或曲面,例如,曲线经过所给数据点。
逼近即构建的曲线或曲面并不一定精确的满足数据点,仅仅是近似的满足。
在一些应用领域,用坐标测量仪或数字化扫描仪生成大量的数据点云,而且伴随着测量误差。
这样的情况下对于构建的曲线或曲面来说更重要的是反映数据点的整体形状,而不是扭曲曲线或曲面去满足每个点。
在逼近时往往需要一个误差允许的最大范围给定一些约束。
逼近要比插值困难得多,对于插值,根据所选阶数和数据点的数目就可以确定控制点的数目,节点分布简单直接,并且没有曲线或曲面误差。
而对于逼近,给出数据点的同时也给定了误差的范围E。
一般事先并不知道需要多少控制点来保证想要的精度,因此逼近方法通常是迭代的,很明显,逼近的代价要比插值昂贵得多。
逼近需要多重构建曲线曲面,并且误差检查的代价很大。
所以这里主要讨论插值法的曲线曲面重构。
41整体曲线插值给定数据点仉,j=0,1,n,构建插值与这些点的P阶非有理B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NURBS 曲线 曲面 方法 精品 文档