同济大学弹性力学试卷资料下载.pdf
- 文档编号:16123780
- 上传时间:2022-11-20
- 格式:PDF
- 页数:15
- 大小:396.62KB
同济大学弹性力学试卷资料下载.pdf
《同济大学弹性力学试卷资料下载.pdf》由会员分享,可在线阅读,更多相关《同济大学弹性力学试卷资料下载.pdf(15页珍藏版)》请在冰豆网上搜索。
)(每小题2分)
(1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q来等代。
()
(2)对于常体力平面问题,若应力函数),(yx满足双调和方程022,那么由),(yx确定的应力分量必然满足平衡微分方程。
()(3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结果会有所差别。
()(4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。
()(5)无论是对于单连通杆还是多连通杆,其截面扭矩均满足如下等式:
dxdyyxFM),(2,其中),(yxF为扭转应力函数。
()(6)应变协调方程的几何意义是:
物体在变形前是连续的,变形后也是连续的。
()(7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。
()(8)对于两种介质组成的弹性体,连续性假定不能满足。
()(9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。
()(10)三个主应力方向一定是两两垂直的。
()22填空题填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(共20分,每小题2分)
(1)弹性力学是研究弹性体受外界因素作用而产生的的一门学科。
(2)平面应力问题的几何特征是:
。
(3)平衡微分方程则表示物体的平衡,应力边界条件表示物体的平衡。
(4)在通过同一点的所有微分面中,最大正应力所在的平面一定是。
(5)弹性力学求解过程中的逆解法和半逆解法的理论基础是:
(6)应力函数4224,cyybxaxyx如果能作为应力函数,其cba,的关系应该是。
(7)轴对称的位移对应的一定是轴对称的。
(8)瑞利里兹法的求解思路是:
首先选择一组带有待定系数的、满足的位移分量,由位移求出应变、应力,得到弹性体的总势能,再对总势能取极值。
(9)克希霍夫的直法线假设是指:
变形前垂直于薄板中面的直线段(法线)在变形后仍保持为直线,并垂直于变形后的中面,且。
(10)一般说来,经过简化后的平面问题的基本方程有个,但其不为零的应力、应变和位移分量有个。
33分析题分析题(共20分,每题10分)
(1)曲梁的受力情况如图1所示,请写出其应力边界条件(固定端不必写)。
eabqPxM图图1
(2)一点应力张量为01211210xxyxzyxyyzyzxzyz已知在经过该点的某一平面上应力矢量为零,求y及该平面的单位法向矢量。
4计算题计算题(共40分)
(1)图2中楔形体两侧受均布水平压力q作用,求其应力分量(体力为零)。
提示:
设应力函数为:
2(cos)rAB(10分)图2
(2)如图3所示的悬臂梁结构,在自由端作用集中力P,不计体力,弹性模量为E,泊松比为,应力函数可取323DyCyBxyAxy,试求应力分量。
(15分)图3(3)如图4所示,简支梁受均布荷载0p和跨中集中荷载p作用,试用瑞雷里兹法求解跨中挠度。
挠度函数表达式分别为:
(1)Lxawsin;
(2)LxbLxaw3sinsin。
比较两种挠度函数计算结果间的差异。
(15分)图4L/2L0pP同济大学本科课程期终考试(考查)统一命题纸A卷标准答案20062007学年第一学期11是非题是非题(认为该题正确,在括号中打;
()(5)无论是对于单连通杆还是多连通杆,其载面扭矩均满足如下等式:
)(共20分,每小题2分)
(1)弹性力学是研究弹性体受外界因素作用而产生的应力应力、应变和位移应变和位移的一门学科。
物体物体在在一个方向的一个方向的尺寸远小于另两个方向的尺寸尺寸远小于另两个方向的尺寸。
(3)平衡微分方程则表示物体内部内部的平衡,应力边界条件表示物体边界边界的平衡。
(4)在通过同一点的所有微分面中,最大正应力所在的平面一定是主平面主平面。
解的唯一性定律解的唯一性定律。
(6)应力函数4224,cyybxaxyx如果能作为应力函数,其cba,的关系应该是033cba。
(7)轴对称的位移对应的几何形状和受力几何形状和受力一定是轴对称的。
首先选择一组带有待定系数的、满足位移边界条件位移边界条件或几何或几何可能可能的位移分量,由位移求出应变、应力,得到弹性体的总势能,再对总势能取极值。
变形前垂直于薄板中面的直线段(法线)在变形后仍保持为直线,并垂直于变形后的中面,且长度不变长度不变。
(10)一般说来,经过简化后的平面问题的基本方程有88个,但其不为零的应力、应变和位移分量有99个。
33分析题分析题(共20分,每题10分)
(1)主要边界:
qbrrbrrarrarr,0,0,0次要边界:
babarbaMPerdrPdrPdrsincossin000
(2)一点的应力张量与该点的任意斜面上各应力分量的关系为:
xxyxzyxyyzzxzyzXlmnYlmnZlmn及2221lmn故有20020ymnlmnlm及2221lmn解得:
2,2
(1)0ymnlnn210,61ynQ由此得:
321321616161,1eeenemelevy4计算题计算题(共40分)
(1)解:
极坐标下的应力分量为:
2222211cos22(cos)1()sinrrABrrrABrArr应力边界条件为:
cossinrqqm将应力分量代入边界条件,可解得:
1,cos2AqBq所以应力分量解答为:
(coscos)(cos2cos)sinrrqqq
(2)解:
由题可知,体力X=0,Y=0,且为弹性力学平面应力问题。
1)、本题所设应力函数满足双调和方程:
022(a)2)、应力分量为:
22222230626AyByxYyxDyCAxyXxyxyyx(b)3)、用应力边界条件求待定常数A、B、C、D:
应力边界条件,在上、下表面ay2处,必须精确满足:
0)(,0)(22ayxyayy(c)则有:
0122AaB(d)X=0的左边界为次要边界,利用圣维南原理则有:
X方向力的等效:
sin)(220Pdyaaxx;
对0点的力矩等效:
sin)(220Paydyaaxx;
Y方向力的等效:
cos)(220Pdyaaxxy。
将式(b)代入上式得:
cos164sin32sin833PAaBaPaDaPCa(e)联立式(d)和式(e),解得:
sin32,sin8,cos83,cos3223aPDaPCaPBaPA;
(4)、应力分量为:
)141(cos83,0),431(sin4cos163223yaaPyaaPxyaPxyyx(3)解:
1)挠度函数取为:
(1)Lxavsin梁的总势能为PaaLpaLEILvPvdxxpdxdxvdEILL02340202224)2()()(2对总势能求驻值PLpaLEIa034220得EIPLEILpa4354024回代即得梁的挠度函数LxEIPLPLvsin)2(2503令2lx,则有跨中挠度EIPLEILpaLv4354024)2
(2)挠度函数取为:
LxbLxav3sinsin梁的总势能为baPbaLpbaLEILvPvdxxpdxdxvdEILL32814)2()()(20223402022对总势能求驻值022034PLpaLEIa032812034PLpbLEIb得EIPLEILpa4354024EIPLEILpb435408122434回代并令2Lx,即得梁的跨中挠度EIPLEILpbaLv4354081164243968)2(两种挠度函数假定下相差为b。
完毕同济大学本科课程期终考试(考查)统一命题纸B卷20062007学年第一学期课程名称:
1、图1中楔形体顶端受水平集中力P作用,求其应力分量(体力为零)。
(cossin)rAB(20分)图12、如图2所示的悬臂梁结构,在自由端有一个微小的垂直位移,不计体力,弹性模量为E,泊松比为,应力函数可取BxyAxy3,试求应力分量。
(20分)图23、图3所示悬臂梁,截面抗弯刚度EI,梁长L,竖向弹簧刚度k;
悬臂端受集中荷载F作用。
试用瑞雷李兹法求解悬臂端挠度和固定端弯矩。
梁的挠度函数可选为:
lxBv2cos11(20分)图34、图4所示材料密度为的三角形截面坝体,一侧受静水压力,水的密度为1,另一侧自由。
设坝中应力状态为平面应力状态:
fyexdycxbyaxxyyx,请利用平衡方程和边界条件确定常数edcba,和f。
(20分)5、如图5所示的半无限平面,证明应力2sin2sin212sin21ABABArrr为本问题的解答。
(20分)LEIkF1gyyx图4xyq图5同济大学本科课程期终考试(考查)统一命题纸B卷标准答案20062007学年第一学期1、解:
22222112(cossin)01()0rrBArrrrrrr两斜面应力边界条件为:
00r自动满足由隔离体平衡条件:
0:
cos00:
sin0rrXrdYrdP将应力分量代入上面二式,可解得:
02sin2PAB所以应力分量解答为:
2sin,0,0(2sin2)rrPr2、解:
由题可知,体力X=0,Y=0,00)(yxv且为平面应力问题。
222222306AyByxYyxAxyXxyxyyx(b)3)、由物理方程得应变分量为:
2)1(6)1
(2)1(26)(16)(1AyEBEExyAEEAxyEExyxyxyyyxx(c)4)、由几何方程得出位移分量为:
2)1(6)1(266AyEBExvyuxyAEyvAxyExuxyyx(d)由式(d)的前两式积分得:
)(3)(32212xfxyAEvyfyAxEu(e)将上式(e)代入式(d)的第三式,整理得:
BEAyEyfAxExf)1
(2)2(3)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济大学 弹性 力学 试卷