二元一次方程组应用题复习.docx
- 文档编号:1665996
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:6
- 大小:68.71KB
二元一次方程组应用题复习.docx
《二元一次方程组应用题复习.docx》由会员分享,可在线阅读,更多相关《二元一次方程组应用题复习.docx(6页珍藏版)》请在冰豆网上搜索。
慧智教育中小学个性化课外辅导
课题二元一次方程组应用题
课时单编号:
教师姓名
班主任姓名
教学主管
日期
时间段
本次课时数
累计课时数
教学目标
探究二元一次方程组解决实际问题
进一步提高分析问题中的等量关系、设未知数、列方程组、解方程组的能力。
教学重点
二元一次方程组解决实际问题
教学难点
分析问题中的等量关系
教学方法
启发式、讲练结合、归纳总结
素材来源
教辅资料
教学步骤
教学内容
知识与方法
知识点梳理
一、知识点梳理:
1、列方程组解应用题的基本思想:
列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.
2、利用二元一次方程组解决实际问题的步骤:
(1)审题:
弄清题意及题目中的数量关系;
(2)设未知数:
可直接设元,也可间接设元;
(3)找出题目中的等量关系;
(4)列出方程组:
根据题目中表示全部含义的等量关系列出方程,并组成方程组;
(5)解所列的方程组,并检验解的正确性;
(6)写出答案.
题型归类
二、题型归类
类型一:
行程问题
1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?
思路点拨:
画直线型示意图理解题意:
(2)有两个等量关系:
①相向而行:
汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;
②同向而行:
汽车行驶小时的路程=拖拉机行驶小时的路程.
解:
设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.
根据题意,列方程组 解这个方程组,得:
.
答:
汽车行驶了165千米,拖拉机行驶了85千米.
总结升华:
列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么。
有时候需要设间接未知数,有时候需要设辅助未知数。
练习:
甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
类型二:
工程问题
2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:
(1)甲、乙两组工作一天,商店应各付多少元?
(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
解:
(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:
解得
答:
甲组单独做一天商店应付300元,乙组单独做一天商店应付140元。
(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,故请乙组单独做费用最少。
练习:
小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?
请你说明理由.
类型三:
商品销售利润问题
3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?
思路点拨:
做此题的关键要知道:
利润=进价×利润率
解:
甲商品的进价为x元,乙商品的进价为y元,由题意得:
,解得:
答:
两件商品的进价分别为600元和400元。
练习:
某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
A
B
进价(元/件)
1200
1000
售价(元/件)
1380
1200
求该商场购进A、B两种商品各多少件;(注:
获利=售价—进价)
类型四:
银行储蓄问题
4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?
(利息所得税=利息金额×20%,教育储蓄没有利息所得税)
思路点拨:
设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:
解:
设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:
,解得:
答:
存教育储蓄的钱为1500元,存一年定期的钱为500元.
练习:
李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?
(注:
公民应缴利息所得税=利息金额×20%)
类型五:
生产中的配套问题
5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只.现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?
解:
设用x米布料做衣身,用y米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:
答:
用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.
练习:
某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。
类型六:
利润率问题
6.某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?
思路点拨:
设去年的总产值为x万元,总支出为y万元,则有
总产值(万元)
总支出(万元)
利润(万元)
去年
x
y
200
今年
120%x
90%y
780
解:
设去年的总产值为x万元,总支出为y万元,根据题意得:
,解之得:
答:
去年的总产值为2000万元,总支出为1800万元
练习:
某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。
类型七:
浓度问题
7.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?
思路点拨:
本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:
(1)甲种酒精溶液与乙种酒精溶液的质量之和=50;
(2)混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;
解:
设甲、乙两种酒精溶液分别取xkg,ykg.依题意得:
,
答:
甲取20kg,乙取30kg
练习:
要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?
类型八:
优化方案问题:
8.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:
如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨.但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案
方案一:
将蔬菜全部进行粗加工;
方案二:
尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;
方案三:
将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成
你认为选择哪种方案获利最多?
为什么?
解:
方案一获利为:
4500×140=630000(元).
方案二获利为:
7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).
方案三获利如下:
设将吨蔬菜进行精加工,吨蔬菜进行粗加工,则根据题意,得:
,解得:
所以方案三获利为:
7500×60+4500×80=810000(元).
因为630000<725000<810000,所以选择方案三获利最多
答:
方案三获利最多,最多为810000元。
练习:
某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:
甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
类型九:
几何问题
9.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
解:
设长方形地砖的长xcm,宽ycm,由题意得:
,
答:
每块长方形地砖的长为45cm、宽为15cm。
练习:
用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?
课后作业
四、课后作业
1、两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
2、小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元,问小敏的爸爸两种存款各存入了多少元?
(不计利息税)
3、现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?
4、一种35%的新农药,如稀释到1.75%时,治虫最有效。
用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?
6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 应用题 复习