液晶的电光特性实验报告含思考题Word文档格式.docx
- 文档编号:13952139
- 上传时间:2022-10-15
- 格式:DOCX
- 页数:9
- 大小:241.53KB
液晶的电光特性实验报告含思考题Word文档格式.docx
《液晶的电光特性实验报告含思考题Word文档格式.docx》由会员分享,可在线阅读,更多相关《液晶的电光特性实验报告含思考题Word文档格式.docx(9页珍藏版)》请在冰豆网上搜索。
排列方式和天然胆甾相液晶的主要区别是:
扭曲向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。
而天然胆甾相液晶的螺距一般不足1um,不能人为控制。
扭曲向列排列的液晶对入射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。
在一般条件下旋转的角度(扭曲角)等于两基片之间的取向夹角。
对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋于无穷大,胆甾相在电场的作用下转变成了向列相。
这也称为退螺旋效应。
由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈
称,在左,右和俯视3个方向,垂直视角接近60度时对比度为5,观看效果较好。
在仰视方向对比度随着垂直视角的加大迅速降低,观看效果差。
图4液晶的视角特性
实验光路图:
图5液晶电光效应实验示意图
四、实验内容与要求
1、液晶电光特性测量
1)将激光器、液晶屏及光电池插入机箱对应插孔内,打开机箱电源。
2)取掉液晶屏,调节激光器高度使激光器光斑入射到光电池入射孔内。
3)调节激光通过起偏器后进入光电转换器后的光电流尽可能大;
再插入检偏器,旋转检偏器使激光光斑变到最暗状态,此时两偏振片振动方向角度差应为90°
,将液晶屏重新放入对应插孔,可以发现此时光电流增加。
4)调节频率旋钮,逆时针旋转到最小,此时频率为最大值,入射到激光器的光斑无闪烁现象,幅值电压表头及光电流表头数字稳定。
5)顺时针旋转幅值旋钮,缓缓增大输出方波信号的幅值,观察光电流表的数据,记录下幅值对应光电流值,填入表格1,并绘制幅值与光电流关系图及透过率与幅值关系图(透过率在幅值为0时为100%),求出关断电压及阈值电压。
(注意调节幅值过程中,0~2V每次调节0.2V,2V~5V每次调节0.1V)
表1
根据幅值和光电流值作图,从图形找到90%透过率时驱动电压幅值(阈值电压)和10%透过率时驱动电压幅值(关断电压)。
2、液晶屏视角特性测量
1)重复实验一1、2、3、4实验部分。
2)调节幅值电压0V,旋转液晶屏±
80°
,每隔20°
测量一次
3)调节幅值电压为2V,重复上面测量过程。
五、实验数据记录与处理
1、液晶电光特性测量
1)数据记录表格:
幅值/V
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
光电流值/mA
0.213
0.214
透过率
100%
1.8
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
0.212
0.208
0.203
0.189
0.169
0.135
0.105
0.08
0.06
98%
95%
89%
79%
63%
49%
38%
28%
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
0.045
0.035
0.026
0.018
0.015
0.011
0.009
0.007
0.005
21%
16%
12%
8%
7%
5%
4%
3%
2%
3.7
3.8
3.9
4
4.1
4.2
4.3
4.4
4.5
0.004
0.003
0.002
0.001
1%
0%
4.6
4.7
4.8
4.9
5
2)液晶电光效应关系图:
通过图像可知,90%透过率时驱动电压幅值(阈值电压)为:
2.19V;
10%透过率时驱动电压幅值(关断电压)为:
3.04V。
角度
0V
2V
-80
0.174
0.141
-60
0.234
0.216
-40
0.237
0.223
-20
0.225
0.215
0.209
20
40
0.224
0.219
60
0.218
80
0.168
0.122
2)图像表示:
六、思考题
1)详细叙述饱和电压与阈值电压的物理意义及作用:
阈值电压(Thresholdvoltage):
通常将传输特性曲线中输出电压随输入电压改变而急剧变化转折区的中点对应的输入电压称为阈值电压.在描述不同的器件时具有不同的参数。
最大透光强度的10%所对应的外加电压值称为阈值电压(Uth),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。
最大透光强度的90%对应的外加电压值称为饱和电压(Ur),标志了3获得最大对比度所需的外加电压数值,Ur小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。
液晶的电光特性曲线越陡,即阈值电压与饱和电压的差值越小,由液晶开关单元构成的显示器件允许的驱动路数就越多。
2)液晶屏视角特性测量有何意义:
液晶屏视角特性测量意义在于探索假定液晶分子没有固定的电极。
但可被外电场极化形成一种感生电极矩。
这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。
液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。
3)查找相关资料,了解液晶的特性及分类,以及其他材料在作为显示器件中的应用情况和各自的优缺点:
液晶平面显示器的技术发展趋于成熟阶段,而且其应用面也随着信息、通讯和网络技术的进步而被大量地运用,例如笔记本电脑、移动电话、个人助理机和携带式消费性产品等。
较难实现之广视野角、高画质化和高速化等问题,均因新的材料、新的组合设计和新的驱动方式之发展,而实现了轻薄短小和替代性映像管监视器和电视的功能。
液晶材料(LiquidCrystal)在液晶平面显示器的组成结构上所担任的角色是相当地重要,虽然其种类有数万种,但真正使用的也仅有数十多种。
液晶状态被喻为是自然界中物质的第四状态,而有别于固态、液态和气态的物质三大状态,液晶分子是一种具有光学异方向性和流动性之结晶性液体,是一种机能性材料。
液晶依其分子排列方式,分为向列型(Nematic)、距列型(Smectic)、胆固醇型(Cholesteric)、圆盘型(Disotic)*若依对外在因素的影响,有溶致型的(Lyotropic)、热致型(Thermotropic);
若依分子量来分,有低分子型和高分子型;
若依温度的因素,有互变转换型(Enantiotropic)、单变转换型(Monotropic);
在高分子的液晶有主链型和侧链型。
液晶的发现最早是在19世纪,经由多年的研究才成功的开发出液晶平面显示器的应用。
向列型液晶显示法的机制有利用动态散射模式的显示法、分子轴旋转模式的显示法、扭曲构造模式的显示法、主体和客体效应模式的显示法和热汪学效应的显示法等。
其中以动态散射模式的显示法为主流,应用的领域有输入表示装置、非破坏检查和超音波等。
当加大电压时,则程现安定循环流的条纹模样,此一条纹模样,此一条纹模样在数伏特的电压范围内程现静止安定状态,在更高电压时,安定循环流变成乱流而使区块开始激烈的摇动,其静止状态称为韦廉斯区块(WilliamsDomain),而摇动状态称之为动态散射效应。
近年来液晶材料的新用途,也发展到摩擦、摩耗和润滑材料等方面应用,液晶材料的一项有趣的物理性质-电粘性效应(Electrorheologicaleffect,ER),乃是在外加电场的作用下,而其粘度值产生变化,具有此一特性的物质称之为电粘性流体。
液晶的分子结构是多样化的棒状或碟盘状之构造体,而且也不断有新的功能性液晶材料分子被合成。
例如复数的非液晶性的分子因氢结合之聚合效应,而产生有液晶特性的所谓氢结合型液晶,同时不同性质的金属错合物液晶分子结构的新物值质也被期待开发出来。
七、实验误差
液晶受环境影响较大,温度湿度以及外界光照条件均有可能对液晶光电效应测量产生影响;
在旋转液晶屏的时候,是靠人眼进行读数的,这一过程中可能因为视角问题以及人为因素产生误差;
实验中发现旋转液晶屏,在对称的位置上其光电流并不相等,可能存在光具座不够水平,高度不严格统一等问题引起的误差。
八、总结
本次“液晶电光效应”实验中我们真正接触到了生活中常见的液晶屏,以及进一步研究了液晶屏的一些性质,研究了液晶光开关的电光特性,了解了阀值电压和关断电压的概念,对液晶品质的优劣有了一定的认识。
同时还通过对液晶光开关水平视角特性和垂直视角特性进行了测量,让我们通过对不同角度液晶屏对比度的分析,从原理上了解了液晶屏的最佳观看角度所蕴含的科学道理。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 液晶 电光 特性 实验 报告 思考题