高考数学圆锥曲线经典例题及总结教案.docx
- 文档编号:29213291
- 上传时间:2023-07-21
- 格式:DOCX
- 页数:18
- 大小:26.84KB
高考数学圆锥曲线经典例题及总结教案.docx
《高考数学圆锥曲线经典例题及总结教案.docx》由会员分享,可在线阅读,更多相关《高考数学圆锥曲线经典例题及总结教案.docx(18页珍藏版)》请在冰豆网上搜索。
高考数学圆锥曲线经典例题及总结教案
高考数学圆锥曲线经典例题及总结教案
圆锥曲线
1.圆锥曲线的两定义:
第一定义中要重视“括号”内的限制条件:
椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。
若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
(1)椭圆:
焦点在轴上时(),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?
(ABC≠0,且A,B,C同号,A≠B)。
(2)双曲线:
焦点在轴上:
=1,焦点在轴上:
=1()。
方程表示双曲线的充要条件是什么?
(ABC≠0,且A,B异号)。
(3)抛物线:
开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:
由,分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:
由,项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:
焦点在一次项的坐标轴上,一次项的符号决定开口方向。
提醒:
在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:
(1)椭圆(以()为例):
①范围:
;②焦点:
两个焦点;③对称性:
两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:
两条准线;⑤离心率:
,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)双曲线(以()为例):
①范围:
或;②焦点:
两个焦点;③对称性:
两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:
两条准线;⑤离心率:
,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:
。
(3)抛物线(以为例):
①范围:
;②焦点:
一个焦点,其中的几何意义是:
焦点到准线的距离;③对称性:
一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:
一条准线;⑤离心率:
,抛物线。
5、点和椭圆()的关系:
(1)点在椭圆外;
(2)点在椭圆上=1;(3)点在椭圆内
6.直线与圆锥曲线的位置关系:
(1)相交:
直线与椭圆相交;直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。
(2)相切:
直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;
(3)相离:
直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。
提醒:
(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:
相切和相交。
如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;
(2)过双曲线=1外一点的直线与双曲线只有一个公共点的情况如下:
①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P在两条渐近线上但非原点,只有两条:
一条是与另一渐近线平行的直线,一条是切线;④P为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:
两条切线和一条平行于对称轴的直线。
7、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:
,当即为短轴端点时,的最大值为bc;对于双曲线。
如
(1)短轴长为,
8、抛物线中与焦点弦有关的一些几何图形的性质:
(1)以过焦点的弦为直径的圆和准线相切;
(2)设AB为焦点弦,M为准线与x轴的交点,则∠AMF=∠BMF;(3)设AB为焦点弦,A、B在准线上的射影分别为A,B,若P为AB的中点,则PA⊥PB;(4)若AO的延长线交准线于C,则BC平行于x轴,反之,若过B点平行于x轴的直线交准线于C点,则A,O,C三点共线。
9、弦长公式:
若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则=,若分别为A、B的纵坐标,则=,若弦AB所在直线方程设为,则=。
特别地,焦点弦(过焦点的弦):
焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
抛物线:
在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。
提醒:
因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!
11.了解下列结论
(1)双曲线的渐近线方程为;
(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,≠0)。
(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;
(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为;
(5)通径是所有焦点弦(过焦点的弦)中最短的弦;
(6)若抛物线的焦点弦为AB,,则①;②
(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点
12、解析几何与向量综合时可能出现的向量内容:
(1)给出直线的方向向量或;
(2)给出与相交,等于已知过的中点;
(3)给出,等于已知是的中点;
(4)给出,等于已知与的中点三点共线;
(5)给出以下情形之一:
①;②存在实数;③若存在实数,等于已知三点共线.
(6)给出,等于已知,即是直角,给出,等于已知是钝角,给出,等于已知是锐角,
(8)给出,等于已知是的平分线/
(9)在平行四边形中,给出,等于已知是菱形;
(10)在平行四边形中,给出,等于已知是矩形;
(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);
(12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);
(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);
(14)在中,给出等于已知通过的内心;
(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);
(16)在中,给出,等于已知是中边的中线;
(3)已知A,B为抛物线x2=2py(p0)上异于原点的两点,,点C坐标为(0,2p)
(1)求证:
A,B,C三点共线;
(2)若=()且试求点M的轨迹方程。
(1)证明:
设,由得
,又
,,即A,B,C三点共线。
(2)由
(1)知直线AB过定点C,又由及=()知OMAB,垂足为M,所以点M的轨迹为以OC为直径的圆,除去坐标原点。
即点M的轨迹方程为x2+(y-p)2=p2(x0,y0)。
13.圆锥曲线中线段的最值问题:
例1、
(1)抛物线C:
y2¬=4x上一点P到点A(3,4)与到准线的距离和最小,则点P的坐标为______________
(2)抛物线C:
y2¬=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为。
分析:
(1)A在抛物线外,如图,连PF,则,因而易发现,当A、P、F三点共线时,距离和最小。
(2)B在抛物线内,如图,作QR⊥l交于R,则当B、Q、R三点共线时,距离和最小。
解:
(1)(2,)
(2)()
1、已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。
(1)求双曲线C2的方程;
(2)若直线l:
与椭圆C1及双曲线C2恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。
解:
(Ⅰ)设双曲线C2的方程为,则
故C2的方程为(II)将
由直线l与椭圆C1恒有两个不同的交点得
即①由直线l与双曲线C2恒有两个不同的交点A,B得
解此不等式得③
由①、②、③得
故k的取值范围为
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足MB//OA,MAAB=MBBA,M点的轨迹为曲线C。
(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y),=(0,-3-y),=(x,-2).再由愿意得知(+)=0,即(-x,-4-2y)(x,-2)=0.
所以曲线C的方程式为y=x-2.(Ⅱ)设P(x,y)为曲线C:
y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程为,即。
则O点到的距离.又,所以
当=0时取等号,所以O点到距离的最小值为2.
设双曲线(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于()
设双曲线的一条渐近线,则双曲线的离心率为().
过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为
已知双曲线的左、右焦点分别是、,其一条渐近线方程为,点在双曲线上.则=()0
已知直线与抛物线相交于两点,为的焦点,若,则()
已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是()
设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。
若AB的中点为(2,2),则直线l的方程为_____________.
椭圆的焦点为,点P在椭圆上,若,则;的大小为.
过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,则________________
【解析】设切点,则切线的斜率为.由题意有又解得:
双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以△=,所以由渐近线方程为知双曲线是等轴双曲线,∴双曲线方程是,于是两焦点坐标分别是(-2,0)和(2,0),且或.不妨去,则,.
∴=
【解析】设抛物线的准线为直线
恒过定点P.如图过分别作于,于,由,则,点B为AP的中点.连结,则点的横坐标为,故点的坐标为
故选D点P处的切线PT平分△PF1F2在点P处的外角.
2.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点以焦点弦PQ为直径的圆必与对应准线相离以焦点半径PF1为直径的圆必与以长轴为直径的圆内切若在椭圆上,则过的椭圆的切线方程是若在椭圆外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是椭圆(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为椭圆(a>b>0)的焦半径公式:
(,)设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.
10.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NFAB是椭圆的不平行于对称轴的弦,M为AB的中点,则,
即。
12.若在椭圆内,则被Po所平分的中点弦的方程是若在椭圆内,则过Po的弦中点的轨迹方程是.
二、双曲线
1.点P处的切线PT平分△PF1F2在点P处的内角.
2.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点以焦点弦PQ为直径的圆必与对应准线相交以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:
P在右支;外切:
P在左支)
5.若在双曲线(a>0,b>0)上,则过的双曲线的切线方程是若在双曲线(a>0,b>0)外,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是双曲线(a>0,b>o)的左右焦点分别为F1,F2,点P为双曲线上任意一点,则双曲线的焦点角形的面积为双曲线(a>0,b>o)的焦半径公式:
(当在右支上时,当在左支上时,设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.
10.过双曲线一个焦点F的直线与双曲线交于两点P、Q,A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NFAB是双曲线(a>0,b>0)的不平行于对称轴的弦,M为AB的中点,则,即。
12.若在双曲线(a>0,b>0)内,则被Po所平分的中点弦的方程是若在双曲线(a>0,b>0)内,则过Po的弦中点的轨迹方程是.
椭圆与双曲线的对偶性质--(会推导的经典结论)
椭圆
1.椭圆(a>b>o)的两个顶点为,,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是.
2.过椭圆(a>0,b>0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且(常数)若P为椭圆(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,,,则设椭圆(a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记,,,则有若椭圆(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项P为椭圆(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则,当且仅当三点共线时,等号成立椭圆与直线有公共点的充要条件是已知椭圆(a>b>0),O为坐标原点,P、Q为椭圆上两动点,且.
(1);
(2)|OP|2+|OQ|2的最大值为;(3)的最小值是过椭圆(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则0.已知椭圆(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点,则设P点是椭圆(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则
(1).
(2)2.设A、B是椭圆(a>b>0)的长轴两端点,P是椭圆上的一点,,,,c、e分别是椭圆的半焦距离心率,则有
(1).
(2).(3)已知椭圆(a>b>0)的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF的中点过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).
(注:
在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.
双曲线
1.双曲线(a>0,b>0)的两个顶点为,,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是.
2.过双曲线(a>0,b>o)上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且(常数)若P为双曲线(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,,,则(或)设双曲线(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记,,,则有若双曲线(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项P为双曲线(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则,当且仅当三点共线且和在y轴同侧时,等号成立双曲线(a>0,b>0)与直线有公共点的充要条件是已知双曲线(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且.
(1);
(2)|OP|2+|OQ|2的最小值为;(3)的最小值是过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则0.已知双曲线(a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点,则或设P点是双曲线(a>0,b>0)上异于实轴端点的任一点,F1、F2为其焦点记,则
(1).
(2)2.设A、B是双曲线(a>0,b>0)的长轴两端点,P是双曲线上的一点,,,,c、e分别是双曲线的半焦距离心率,则有
(1).
(2).(3)已知双曲线(a>0,b>0)的右准线与x轴相交于点,过双曲线右焦点的直线与双曲线相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF的中点过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).
(注:
在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点)双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.
其他常用公式:
1、连结圆锥曲线上两个点的线段称为圆锥曲线的弦,利用方程的根与系数关系来计算弦长,常用的弦长公式:
2、直线的一般式方程:
任何直线均可写成(A,B不同时为0)的形式。
3、知直线横截距,常设其方程为(它不适用于斜率为0的直线)
与直线垂直的直线可表示为。
4、两平行线间的距离为。
5、若直线与直线平行
则(斜率)且(在轴上截距)(充要条件)
6、圆的一般方程:
,特别提醒:
只有当时,方程才表示圆心为,半径为的圆。
二元二次方程表示圆的充要条件是且且。
7、圆的参数方程:
(为参数),其中圆心为,半径为。
圆的参数方程的主要应用是三角换元:
;
8、为直径端点的圆方程
切线长:
过圆()外一点所引圆的切线的长为()
9、弦长问题:
①圆的弦长的计算:
常用弦心距,弦长一半及圆的半径所构成的直角三角形来解:
;②过两圆、交点的圆(公共弦)系为,当时,方程为两圆公共弦所在直线方程.。
攻克圆锥曲线解答题的策略
摘要:
为帮助高三学生学好圆锥曲线解答题,提高成绩,战胜高考,可从四个方面着手:
知识储备、方法储备、思维训练、强化训练。
关键词:
知识储备方法储备思维训练强化训练
第一、知识储备:
直线方程的形式
(1)直线方程的形式有五件:
点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容
①倾斜角与斜率
②点到直线的距离③夹角公式:
(3)弦长公式
直线上两点间的距离:
或
(4)两条直线的位置关系
①=-1②
2、圆锥曲线方程及性质
(1)、椭圆的方程的形式有几种?
(三种形式)
标准方程:
距离式方程:
参数方程:
(2)、双曲线的方程的形式有两种
标准方程:
距离式方程:
(3)、三种圆锥曲线的通径你记得吗?
(4)、圆锥曲线的定义你记清楚了吗?
如:
已知是椭圆的两个焦点,平面内一个动点M满足则动点M的轨迹是()
A、双曲线;B、双曲线的一支;C、两条射线;D、一条射线
(5)、焦点三角形面积公式:
(其中)
(6)、记住焦半径公式:
(1),可简记为“左加右减,上加下减”。
(2)
(3)
(6)、椭圆和双曲线的基本量三角形你清楚吗?
第二、方法储备
1、点差法(中点弦问题)
设、,为椭圆的弦中点则有
,;两式相减得2、联立消元法:
你会解直线与圆锥曲线的位置关系一类的问题吗?
经典套路是什么?
如果有两个参数怎么办?
设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式,以及根与系数的关系,代入弦长公式,设曲线上的两点,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。
若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。
一旦设直线为,就意味着k存在。
例1、已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).
(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;
(2)若角A为,AD垂直BC于D,试求点D的轨迹方程.
分析:
第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC的斜率,从而写出直线BC的方程。
第二问抓住角A为可得出AB⊥AC,从而得,然后利用联立消元法及交轨法求出点D的轨迹方程;
解:
(1)设B(,),C(,),BC中点为(),F(2,0)则有
两式作差有
(1)
F(2,0)为三角形重心,所以由,得,由得,代入
(1)得
直线BC的方程为
2)由AB⊥AC得
(2)
设直线BC方程为,得
,
代入
(2)式得
,解得或
直线过定点(0,,设D(x,y),则,即
所以所求点D的轨迹方程是。
4、设而不求法
例2、如图,已知梯形ABCD中,点E分有向线段所成的比为,双曲线过C、D、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 圆锥曲线 经典 例题 总结 教案