成都大学版基于单片机的智能照明控制系统设计.docx
- 文档编号:29249498
- 上传时间:2023-07-21
- 格式:DOCX
- 页数:29
- 大小:212.36KB
成都大学版基于单片机的智能照明控制系统设计.docx
《成都大学版基于单片机的智能照明控制系统设计.docx》由会员分享,可在线阅读,更多相关《成都大学版基于单片机的智能照明控制系统设计.docx(29页珍藏版)》请在冰豆网上搜索。
成都大学版基于单片机的智能照明控制系统设计
学院
学位论文
基于单片机的智能照明控制系统设计
论文作者姓名:
XXX
申请学位专业:
光信息科学与技术
申请学位类别:
理学学士
指导教师姓名(职称):
XXX(高级实验师)
论文提交日期:
2012年06月01日
基于单片机的智能照明控制系统设计
摘要
随着电子技术的飞速发展,基于单片机的控制系统已广泛应用于工业、农业、电力、电子、智能楼宇等行业,微型计算机作为嵌入式控制系统的主体与核心,代替了传统的控制系统的常规电子线路。
楼宇智能化的发展与成熟,也为基于单片机的照明控制系统的普及与应用奠定了坚实的基础。
本文介绍了基于单片机AT89C51的室内灯光控制系统及其原理,提出了有效的节能控制方法。
该系统采用了当今比较成熟的传感技术和计算机控制技术,利用多参数来实现对学校教室室内照明的控制。
系统设计包括硬件设计和软件设计两部分。
工作时,光信号取样电路采集光照强弱、人体信号采集电路采集室内是否有人、是否为工作时间等信息并将信号送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。
关键词:
单片机;光信号;微型计算机;节能
TheControlSystemforIntelligentLightingBasedon
Single–chipMicrocomputer
Abstract
Withtherapiddevelopmentofelectronictechnology,thesystemofcontrolbasedonSingle-chipMicrocomputeriswidelyappliedinindustry,agriculture,electricpower,electron,intelligentbuildingandsoon.Microcomputer,asthesubjectandcoreoftheembeddedsystemofcontrol,replacesthetraditionalsystem—electroniccircuit.Atthesametime,thedevelopmentandmaturationoftheintelligentbuildinghaveestablishedthesubstantialfoundationforthepopularizationandapplicationofthecontrolsystemforlightingbasedonsingle-chipmicrocomputer。
Inthispaper,theIndoorLightingControlSystemBasedonAT89C51anditsprincipleareintroduced.Someeffectiveandenergysavingcontrolstrategysoflightingsystemarebroughtforward.Thecurrentsystemusesarelativelymaturesensortechnologyandcomputercontroltechnology,usingmulti-parametertoachievetheschoolclassroomindoorlightingcontrol.
Thesystemincludeshardwareandsoftwaredesignintwoparts.Whenwork,theopticalsignalsamplingcircuitcollectinglightingintensity,indoorcollectingofhumansignalacquisitioncircuitifanyone,whetherforworktimeandotherinformationandsignaltothemicrocontroller,MCUcontrolcircuitibasedontheseinformationthroughtheswitchingoperationoflightingequipmentinordertoachievelightingcontrolstosavaenergy.
Keywords:
Single-chipmicrocomputer;Opticalsignal;microcomputer;Energyconservation
目录
论文总页数:
20页
1引言1
1.1研究背景1
1.2智能照明控制系统的发展概况1
1.2.1国内外智能照明发展概况1
1.2.2智能照明控制系统的优点1
2设计部分2
2.1设计要求2
2.2系统设计2
2.3逻辑控制2
2.4硬件设计3
2.4.1系统硬件总述3
2.4.2AT89C51单片机介绍4
2.4.3光照检测电路5
2.4.4人体信号采集电路5
2.4.5比较电路8
2.4.6延迟时间选择电路9
2.4.7输出控制电路10
3系统软件设计及实现11
结论13
参考文献13
致谢14
声明15
附录16
1程序代码16
2电路总图17
3PCB图18
1引言
1.1研究背景
随着经济的发展和国家对教育的重视,校园规模也逐渐随着人数规模的壮大而扩大。
但是普遍学校都是开放型的管理模式,高校的教室在白天室内照度很高的情况下,仍然普遍存在开灯作业;即使是很少的时候也是整个教室的灯全亮着。
甚至教室无人的时候灯仍然亮着。
这些现象普遍存在于各大高校,浪费了电力资源。
目前通常使用的节电方式有实行手工控制,声控型,太阳能灯等。
但是它们都存在一定的弊端。
手工控制方式操作不便,费时费力,而且需要人工控制。
声控型则容易存在判断不准确,当不是人为需要的时候,其它噪声也可能会让灯亮。
太阳能设备投资比较大,且容易受光照强度的影响,不适合用在教室设施场所。
因此市场上迫切需要一种操作方便、价格低廉、便于大面积推广的新型节能方案。
改革开放30年来,我国经济取得了突飞猛进的发展,人民生活水平质量也得到了巨大的提高,人们对照明的需求也越来越高。
从最初只提供亮度的基本功能到现在产了多方面的需求:
除了提供适宜的环境亮度以外,还要营造优雅舒适的氛围;用户方要求控制方式灵活方便,能实现按需配置,同时实现节能、降低运行费用;施工方要求安装简单、维护方便;设计方要求系统能提供满足用户多样性要求的各种技术手段。
需求的变化导致控制方式的改进:
从传统的机械式开关演变为电子技术的智能照明系统。
能源短缺是21世纪国际面临的新课题。
在寻找新的能源之外,节约能源,提高效益也就成为了我们研究的课题。
所以如何来节省电力能源也成为了一个迫切需要解决的问题。
从节约资源、对社会贡献、节省部门经费支出等多方面考虑,办公室、高校教室等公共场所照明的节电问题不得不提到重要的议事日程上来。
目前常用的节电方式为手工控制,声控型,太阳能灯等。
手工方式操作起来不灵活,费时费力。
声控型往往判断不准确,不需要的时候也也会经常亮。
太阳能设备投资比较大,且容易受光照强度的影响。
因此市场上迫切需要一种操作方便、价格低廉、便于大面积推广的新型节能方案。
1.2智能照明控制系统的发展概况
1.2.1国内外智能照明发展概况
“智能建筑”是综合计算机、信息通信等方面最先进的技术,使建筑物内的电力、空调、照明、防灾、防盗、运输设备等,实现建筑物综合管理自动化、远程通信和办公自动化的有效运作,并使这三种功能结合起来的建筑。
人工智能技术在建筑与照明中的应用趋势不断扩大。
正如英国的Glasgow市报指出:
“Glasgow正在成为一个研究和发展太空时代智能建筑的国际组织的神经中枢。
在智能建筑中的智能照明、供热、空调、通讯及办公设备将全部由电子计算机进行控制与管理。
”
面对这一发展趋势,开发了不少智能照明设计。
正如智能灯具、智能照明控制与管理系统,包括在照明方面的计算机硬件和软件。
此外计算机在照明设计和测试方面也得到广泛应用。
澳大利亚邦奇开发的Dynalie智能照明控制系统,美国的智能照明建筑,特别是现代化办公室的智能照明技术等都值得我们研究与借鉴。
1.2.2智能照明控制系统的优点
智能照明控制系统是指用计算机技术并辅助以其它手段,对电力照明实行智能控制,提供合适照明光环境的同时降低照明系统电能消耗和其它使用费用。
智能照明控制系统于手动照明控制系统相比有很多优点,包括创造环境气氛,改善工作环境、提高工作效率,良好的节能效果,延长光源寿命,管理维护方便等。
1.3.4智能照明控制系统的组成
智能照明控制系统主要由输入装置、处理器和执行器三个部分组成。
输入装置可以不断检测周围环境的照度水平,可以探测到某个区域是否有人移动,以及输入人们的控制指令,并把相应的信号传送给处理器。
输入装置包括传感器、定时装置和控制面板或遥控器。
处理器接受输入装置的信号,经过信息处理、判断、分析,输出控制信号。
执行器与灯具直接连接,控制灯光回路的闭合或断开和调节灯光到相应的水平,包括手动开关。
1.2.3现有智能照明控制系统的分析
澳大利亚邦奇开发的Dynalite分布式智能照明控制系统的特点是模块化结构和分布式控制,各功能模块之间通过网络总线直接相互通信,当系统中某个模块出现故障时不会影响其它模块,可靠性高。
美国LC&D智能照明控制系统是一套由计算机微处理器控制的低压继电器配电盘组成,按照客户对室内外照明的具体要求,设定照明控制的时间、区域、方法来控制每一个独立的回路,也有手动开关直接控制。
国内生产的真善美智能照明系统具有集中控制、多点操作、集中显示、停电自锁、免打扰、遥控功能等智能功能,使家居生活更加方便和舒适。
但是,国内外智能照明系统的研究存在着如下问题:
(1)现有国外智能照明系统主要控制照度这个数量指标,国外的研究主要集中于办公室照明,以节能为主要目的,但据照明科技最新研究成果表明,非定量指标(如舒适性和艺术性等)对室内照明光环境质量影响更大。
(2)国内一些智能照明控制系统能够实现集中控制和集中显示,具有一定的智能性,但其只能控制房间中的一个灯或一组灯的开、关,不能实现场景控制,也不能对灯光的亮度进行调节,不能产生多种照明效果。
(3)针对住宅照明光环境研制的智能照明控制系统产品很少,还有很大的开发前景。
2设计部分
本章根据论文课题要求的性能指标进行方案论证,给出课题要求的性能指标,根据系统实现功能,完成系统方案设计。
2.1设计要求
控制器的主要目的是对灯的开关状态进行控制。
工作时根据时间和人工及光照等因素综合控制灯的开关状态。
当光照检测电路和热释电红外线传感器采集光照强弱、室内是否有人等信息送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。
系统设计主要包括硬件和软件两大部分,依据控制系统的工作原理和技术性能,将硬件和软件分开设计。
硬件设计部分包括电路原理图、合理选择元器件、绘制线路图,然后对硬件进行调试、测试,以达到设计要求。
硬件电路是采用结构化系统设计方法,该方法保证设计电路的标准化、模块化。
硬件电路的设计最重要的选择用于控制的单片机,并确定与之配套的外围芯片,使所设计的系统既经济又高性能。
硬件电路设计还包括输入输出接口设计,画出详细电路图,标出芯片的型号、器件参数值,根据电路图在仿真机上进行调试,发现设计不当及时修改,最终达到设计目的。
软件设计部分,首先在总体设计中完成系统总框图和各模块的功能设计,拟定详细的工作计划;然后进行具体设计,包括各模块的流程图,选择合适的编程语言和工具,进行代码设计等;最后是对软件进行调试、测试,达到所需功能要求。
本系统软件设计采用模块化系统设计方法,先编写各个功能模块子程序,然后进行组合与调整,经过调试后,达到设计功能要求。
2.2系统设计
系统设计可分为硬件设计和软件设计两部分。
根据我们需要实现的功能,合理选择元器件进行设计。
为了制作出想要的电路板,硬件设计主要涉及到构造原理图,并对原理图用keil软件进行仿真,这一步最为重要,它关系到实验成功与否的关键。
然后一旦仿真测试出我们想要的结果后,就可进行下一步原理图的绘制,利用protel99se软件进行原理图的绘制,对个各个元器件进行封装后,并根据原理图画PCB图,并进行步线调整等,最后一步为电路板实物的制作。
软件设计部分,应该结合硬件电路所要实现的功能进行设计。
主要针对光电检测电路和热释电传感器输出信号进行处理。
当光强的时候,系统对光照进行检测,产生信号并处理控制灯的开关状态,科学管理灯光的亮与灭,达到节约用电的目的。
2.3逻辑控制
教室内灯光控制系统根据天气、时间、等因素自动控制教室内灯光。
当教室或者其它照明场所里面有人时,或者需要进行作业时,如果光线较暗则开灯,光线很亮时则关灯,没有人时,或者不需要进行作业时,则关灯。
光线亮时则关灯,晴天时关灯,休息时间关灯。
根据上述要求,可以画出控制系统逻辑功能表,如表1-1所示。
室内灯光控制系统可以根据气候、人体等因素全天候自动模糊控制室内照明电器的开和关。
做到光线暗时开灯,雨天阴天时开灯,无人时关灯,光线亮时关灯,晴天时关灯。
在确保室内正常照明同时,可有效防止无人灯(无人时开灯)﹑无效灯(光线亮时开灯),从而达到节电目的。
根据上述要求,可以画出如表2-1所示控制系统逻辑功能表。
关系如果假设:
室内光线强度为A:
光线强时A=1,光线弱时A=0;
人体信号为B:
有人时B=1,无人时B=0;
作息时间为C:
上课时C=1,休息时C=0;
电灯开关状态为D:
合时D=1,断开时D=0。
则表1-1可以转化为表1-2。
由真值表可得出系统逻辑函数表达式为:
D=A·B·C
如下表所示
信号
室内光信号
人体信号
时钟信号
电灯的开关状态
参数
自然光照度
人体
作息时间
逻
辑
状
态
强
无
休息
断
强
无
上课
断
强
有
休息
断
强
有
上课
断
弱
无
休息
断
弱
无
上课
断
弱
有
休息
断
弱
有
上课
合
表1-1系统逻辑
表1-2逻辑系统真值表
信号
室内光信号
人体信号
时钟信号
电灯的开光状况
参数
自然光信号
人体
作息时间
符号
A
B
C
D
逻
辑
状
态
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1
2.4硬件设计
2.4.1系统硬件总述
系统以单片微型计算机AT89C51为核心外加多种接口电路组成,共有四个主要部分:
光照检测电路、延时电路、热释电红外线传感及处理电路、输出控制电路。
如图2-1所示
AT89C51
延时电路
光信号采集电路
人体信号采集电路
晶振
输出控制电路
图2-1系统硬件原理及总述结构框图
外围接光照检测电路、热释电红外线传感及处理电路、输出控制电路。
两个开关实现人工控制。
2.4.2AT89C51单片机介绍
AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如图所示。
2.4.3光照检测电路
光信号取样电路如图2-2所示,图中主要由光信号采集电路和A/D模数转换电路组成,其中模数转换是电路的核心。
信号经过采集送入A/D转换电路,通过单片机处理后,最终作为系统应用程序进行开关灯判断的依据。
A/D转换器的位数应根据信号的测量范围和精度来选择,使其有足够的数据长度,保证最大量化误差在设计要求的精度范围内。
本系统中,信号的测量范围的电压:
0.00—9.99V,精度0.01V。
在本次设计中选用了带串行控制的10位模数转换器TLC1549,它是由德州仪器(TexasInstruments简写为TI)公司生产的,它采用CMOS工艺,具有自动采样和保持,采用差分基准电压高阻抗输入,抗干扰性能好,可按比例量程校准转换范围,总不可调整误差达到(±)1LSBMax,芯片体积小等特点。
同时它采用了Microwire串行接口方式,故引脚少,接口方便灵活。
与传统的并行方式接口A/D转换器(例ADC0809/0808)相比,其单片机的接口电路简单,占用I/O接口资源少。
图2-2光信号取样电路
2.4.4人体信号采集电路
1)热释电效应原理简述
热释电红外传感器通过目标与背景的温差来探测目标,其工作原理是利用热释电效应,即在钛酸钡一类晶体的上、下表面设置电极,在上表面覆以黑色膜,若有红外线间歇地照射,其表面温度上升△T,其晶体内部的原子排列将产生变化,引起自发极化电荷,在上下电极之间产生电压△U。
常用的热释电红外线光敏元件的材料有陶瓷氧化物和压电晶体,如钛酸钡、钽酸锂、硫酸三甘肽及钛铅酸铅等。
实质上热释电传感器是对温度敏感的传感器。
它由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极。
在环境温度有ΔT的变化时,由于有热释电效应,在两个电极上会产生电荷△Q,即在两电极之间产生一微弱的电压△V。
由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷△Q会被空气中的离子所结合而消失,即当环境温度稳定不变时,△T=0,则传感器无输出。
当人体进入检测区,因人体温度与环境温度有差别,产生ΔT,则有△T输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出了。
所以这种传感器也称为人体运动传感器。
由实验证明,传感器不加光学透镜(也称菲涅尔透镜),其检测距离小于2m,而加上光学透镜后,其检测距离可增加到10m左右。
2)人体红外探头介绍
热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号。
热释电传感器具有成本低、不需要用红外线或电磁波等发射源、灵敏度高、可流动安装等特点。
实际使用时,在热释电传感器前需安装菲涅尔透镜,这样可大大提高接收灵敏度,增加检测距离及范围。
实验证明,热释电红外传感器若不加菲涅尔透镜,则其检测距离仅为2m左右;而配上菲涅尔透镜后,其检测距离可增加到10m以上。
3)热释电红外传感器介绍
热释电红外传感器主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。
在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。
由探测元件将探测并接收到的红外辐射转变成微弱的电压信号,经装在探头内的场效应管放大后向外输出。
为了提高探测器的探测灵敏度以增大探测距离,一般在探测器的前方装设一个菲涅尔透镜,该透镜用透明塑料制成,将透镜的上、下两部分各分成若干等份,制成一种具有特殊光学系统的透镜,它和放大电路相配合,可将信号放大70分贝以上,这样就可以测出10~20m范围内人的行动。
菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。
当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而强其能量幅度。
人体辐射的红外线中心波长为9~10um,而探测元件的波长灵敏度在0.2~20um范围内几乎稳定不变。
在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7~10um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。
4)菲涅尔透镜介绍
菲涅尔透镜多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求设计的,透镜的要求很高。
菲涅尔透镜在很多时候相当于红外线及可见光的凸透镜,效果好。
多用于精度要求不是很高的场合。
菲涅尔透镜利用透镜的特殊光学原理,在探测前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。
当有人从镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到红外信号以忽强忽弱的脉冲形式输入,从而强化能量幅度。
菲涅尔透镜有两个作用:
一是聚集作用,即将热释红外信号折射(反射)在PIR上,第二个作用是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。
由于热释电传感器输出的信号变化缓慢、幅值小(小于1mV),不能直接作为照明系统的控制信号,因此传感器的输出信号必须经过一个专门的信号处理电路,使得传感器输出信号的不规则波形转变成适合于单片机处理的数字信号。
根据以上要求,人体热释电检测电路组成框图如图2-3所示。
信号处理电路
热释电红外传感器
菲涅尔透镜
检测对象
2-3热释电检测电路组成框图
1)热释电传感器处理电路
本设计采用BIS0001来完成对热释电传感器输出信号的处理。
BIS0001是一款具有较高性能的热释电传感器信号处理集成电路,它主要由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成。
图2-4中,热释电传感器S极输出信号送入BIS0001的14脚,经内部第一级运算放大器放大后,由C3耦合从12脚输入至内部第二级运算放大器放大,再经电压比较器构成的鉴幅器处理后,检出有效触发信号去启动延迟时间定时器,最后从12脚输出信号Vo送入单片机进行照明控制。
实验所得,当传感器检测室内有人时,Vo为4V;无人时Vo为0.4V。
BIS0001的1脚接高电平,使芯片处于可重复触发工作方式。
输出Vo的延迟时间Tx由外部R8和C7的大小调整;触发封锁时间Ti由外部R9和C6的大小调整。
图2-4热释电传感器信号处理电路图
2.4.5比较电路
比较电路如图2-5所示,由两个运算放大器组成,输入信号来自于红外人体探头输出。
比较电路中的基准电压分别由两个独立的分压电路得到,供电路比较所用。
即运算放大器D1的6脚和D2的1脚电压分别为0.45V和2.0V。
图2-5人体信号比较电路
通过比较电路将相应的电压比较结果以数字信号输出。
当被动红外探头在有效范围内感应到人体信号后,运算放大器的“2脚”或“5脚”的电压降为3.0V
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成都 大学 基于 单片机 智能 照明 控制系统 设计